
NBS

PUBLICATIONS

U. S. Department

of Commerce

National Bureau

of Standards NBS- 1 R- 85- 31 56

Reference
AlllOb 034=164

Hierarchical Control System Emulation

User's Manual

January 1 985

NATIONAL bureau
OF STANDARDS

LIBRARY

NBS-IR-85-3156

Hierarchical Control System Emulation

User's Manual

Cite n. Furlanl, Editor

January 1985

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Factory Automation Systems Division

Gaithersburg, MD 20899

TABLE OF CONTENTS

Page
1.

INTRODUCTION 1

1.1 Problem Overview 1

1.2 Solution Overview 3

1.3 Praxis and Related Documentation 7

2.

BACKGROUND 9

2.1 Nodular Hierarchical Real-Time Control Systems 9

2.2 State Machine Concepts 12
2.3 Shared Memory Synchronization 16
2.4 Simulation vs. Emulation Modules 19

3.

SOFTWARE OVERVIEW AND GENERAL USAGE 22

3.1 Software Overview 22
3.2 Description of Software Usage 25

4.

OPERATING SEQUENCE 27
4.1 Entering State Machine Modules 27
4.2 Parsing State Machine Modules (PARSE, PRAXIS) 47
4.3 Building Processes (DICT, BUILD) 50
4.4 Running the HCSE 55
4.5 Log File Output and Summary Statistics 61

5.

SAMPLE DIALOG 63

6.

ERROR MESSAGES AND DEBUGG ING 77

7. PERFORMANCE CAPABILITIES AND LIMITATIONS 80

7.1 Limitations 80
7.2 Performance Capabilities 82

8. APPENDICES 85

8.1 Specific Hardware and Software Requirements 85

8.2 Creating State Machine Modules from State 86
Machine Descriptions

8.3 Praxis Primer and Text I/O Documentation 92

LIST OF FIGURES

Page

FIG. 1. TYPICAL MODEL STRUCTURE 5

FIG. 2. EMULATION SEQUENCE 6

FIG. 3. HIERARCHICAL CONTROL SYSTEM 10

FIG. 4. MODULES COUNTl AND COUNT2 65

FIG. 5. COUNTl. PRX 66

FIG. 6. DICTIONARY LISTING FOR COUNTl AMD COUNT 2 68

FIG. 7. UPDOWN.PRX 69

FIG. 8. LOG LISTING FOR PROCESS UPDCWN 72

FIG. 9. SUMMARY LIST CORRESPONDING TO FIGURE 8 75

FIG. 10. STATE MACHINE DIAGRAM FOR EXAMPLE 87

FIG. 11. RELAY LADDER DIAGRAM FOR EXAMPLE 91

LIST OF TABLES

Page

30TABLE 1. FSM MODULE FORMAT

TABLE 2a. ENUMERATED NEXT STATE AMD OUTPUT FUNCTIONS 89
FOR COUNT1

TABLE 2b ENUMERATED NEXT STATE AND OUTPUT FUNCTIONS
FOR COUNT2

89

Acknowledgement

The major part of the work that is represented in this manual was

done by Bolt Beranek and Newman, Inc. under Department of

Commerce Contract NB81SBCA0826 entitled "Emulation/Simulation of

an Automatic Manufacturing Test Facility". This manual in its

original form was derived from the final report (dated October

1982) from that contract. The product has been further modified

at the National Bureau of Standards. This manual documents the

state of the Hierarchical Control Systems Emulator as of January

1985 .

Page 1

1.0 INTRODUCTION

1.1 Problem Overview

The design of any feedback control system with even modest

complexity requires simulation capability. The controlled plant

and feedback law are simulated in order to assess the possible

effects of discrepancies between the design model of the plant

and the actual plant, and in order to verify the correctness of

design approximations. In feedback systems, the effects of such

discrepancies can be particularly serious and may be manifested

as classical instability in continuous-state systems, or as

errors (trap states) and/or loss of synchronization in

discrete-state systems. Simulation averts the most serious

errors of these types because the control system design can be

corrected without physical damage to the actual plant. Most

simulations today are digital rather than analog.

Increasingly,- the implementation of control systems is also

digital rather than analog, and this raises some new issues:

1. What capacity and speed of computer is required?

2. What is the impact of computing and communication
delays on closed-loop system performance?

3. What structure of real-time software should be
employed?

4. What is the impact of errors in programming logic, or
of. errors in the designer’s conceptual model of the
system's logical relationships?

5. What is the impact of discrete failures or of software
failures?

Page 2

In order to answer- these -questions, it is not sufficient to

merely simulate the input-output relationships of the control

system. Rather, the internal logical structure and

implementation features of the control system (as well as the

controlled system itself) need to be represented. Ideally, a

one -f

o

r-one representation of the control system logic and timing
*

is desired for this purpose. The term fijnilLstifin has been

applied to this sort of "one-for-one" simulation.

In contrast to methods for designing feedback control of

continuous-state dynamic systems, analytic methods for the design

of discrete-state feedback systems are at a very primitive stage.

Since the available design methods are largely heuristic, even

more emphasis must be placed on the iterative design process

whereby an initial design is improved on the basis of simulation

results. A rather general heuristic for the design of discrete

control systems is the modular hierarchical approach proposed by
**

Albus, Barbara and Nagel (1980). The Hierarchical Control System

Emulator (HCSE) described herein provides emulation/simulation

capabilities for a broad class of systems — in particular,

automated manufacturing systems — which can be controlled by

modular hierarchical control systems.

*

The term came into use in the context of verification of
computer^ ^software, where one computer was made to emulate the
operation"of another which typically was in the design stage.
The operating system software, which is designed this way,
actually implements a discrete feedback control system.

**

See Section 2.1 for further details of this approach.

Page 3

1.2 Solution Overview

The use of the Hierarchical Control System Emulation is

described in Sections 3-5 of this manual/ and the more eager user

is referred directly to those sections. The operation of the

emulation may be divided into three phases:

1. Data entry (making modules)

2. Running the HCSE

3. Data logging and analysis

The user enters data for the emulation/simulation entirely by

writing module descriptions. Each module has a common format

based on a generalized state-machine description with named

variables. Communication between modules/ which is transparent

to the user, is achieved totally through storage (by name) of

common input and output variables in a shared (common) memory;

access to the memory is time-slice synchronized. The pattern and

sequencing of input/output transactions between modules may be

specified by the user to define a hierarchical relationship of

the control system modules. The module format is sufficiently

general that modules may be used to simulate physical devices

(subsystems of the controlled plant) as well as emulating control

system components. Normally, these simulation modules are at the

bottom of the hierarchy and communicate horizontally with each

The module format and shared memory implementation were
dictated by requirements of the MBS Automated Manufacturing
Research Facility.

Page 4

other as well as vertically with the hierarchical control system

(Figure 1)

.

In order to run the emulation, the modules may be combined

into subsets which are translated into executable form and run as

independent processes. These processes are synchronized through

common memory. The run-time display runs as another process and

allows the user to monitor the real-time progress of the

emulation.' The user may synchronize the actual rate of progress

of the emulation through the run-time display to achieve

single-cycle operation, wall-clock sychronizatien with variable

time-scaling, or free-running (maximum-speed) emulation. The

user selects the variables from common memory which are to be

displayed, and may stop the emulation to record "snapshots" of

common memory at any time.

Prior to running the emulation, the user may select certain

variables for "logging" purposes. Upon completion of a run,

these logging files may be processed to produce summary

statistics concerning the values taken by each logged variable

and the amount of time spent at each value.

The emulation meets a number of key requirements for

hierarchical control system design and evaluation. Communication

and computing delays can be emulated. The allocation of modules

to different physical processors can be emulated. Different

choices and allocations of module functions can be evaluated, and

the effects of coding changes within modules can be assessed.

l
r

Page 5

r

I

I

I

I

“1

L
PHYSICAL PLANT
SIMULATION J

FIG. 1 TYPICAL MODEL STRUCTURE

Page 6

FIG. jL EMULATION STRUCTURE

Page 7

Doth continuous and discrete variables can be representec; m

particular ,
both continuous physical processes anc

decision-raking processes may be included in the evaluation.

Doth discrete and continuous sources of error may be represented.

Finally, the level of detail in the emulation is under the

control of the user, so that critical operations nay be

represented with great accuracy, while only rough approximations

of other subsystems are used. These and additional capabilities

are discussed in store detail in Section 7.

1.3 Praxis And Related Documentation

The hierarchical control system emulation is written

primarily in Praxis — a modern, strongly-typed structured

language developed by BBN- Inc. —• to run on a VAX 11/7Gl.

Digital Equipment Corporation processor with V:'.S operating system

and DEC-supported terminal (or equivalent, such as the EB!.

Bitgraph). During development, certain portions of the emulation

were written in Ratfor (Rational Fortran). This code has been

translated into Fortran 77 and into Praxis. Extensive use is

made of V!!S operating system utilities. The references listen

below provide appropriate background in these areas. The reacer

is assumed to possess elementary knowledge of the V!1S operating

system and the Praxis language. Section 8.3 contains a Praxis

primer

.

*

Certain commercial products are identiiied in this manual in c^ce.

to adequately describe the HCSE. Such identification does not impiy

recommendation or endorsement by the National Bureau of Stanaarcs.

Page 0

The purpose of this manual is to describe the operational

aspects of the HCSE completely. Thus.- it is a self-contained

reference for the user. In addition,- the HCSE Applications Guide

describes in detail the substantial emulation example modeled

after a portion of the KBS Automated Manufacturing Research

Facility. The Programmer's Manual describes the emulation

software itself and is intended for use by those who wish to

maintain, augment, or modify the HCSE.

Bafsifinco List

1. vax/Vhs command language Usexis Guide. Digital
Equipment Corportat ion , Ilaynard, MA., 198 0.

2. Praxis Language Reference Manual. bbn Report 4582,
January 1981 (see also directory [PRAXIS.DOC] for
on-line documentation).

3 . Johnson, T.L. , Milligan. S.D. and Forfemann. T.E.,
"Hierarchical Control System Emulation User's Manual",
BBN report No. 5096, Bolt Beranek and Newman, Inc.,
Cambridge, MA., July 1982.

4. Johnson, T.L., Milligan, S.D. and Fortmann, T.E.,
"Hierarchical Control System Emulation Applications
Guide", BBN report No. 5094, Bolt Beranek and Newman,
Inc., Cambridge, MA., July 1982.

5. Milligan, S. D. , Johnson , T.L., and Fortmann, T.E.,
"Hierarchical Control System Emulation Programmer's
Manual", BBN Report No. 5095, Bolt Beranek and Newman,
Inc., Cambridge, HA., July 1982.

The example does not reflect actual hardware or software of
the AMRF, as these were not yet fully specified at the time the
HCSE was developed.

Page 9

2.0 BACKGROUND

The purpose of this section is to review the key concepts of

hierarchy, modularity, state machine tables, shared memory, and

synchronization which have dictated the central features of the

emulation. The user will quickly discover that the actual

emulation software imposes very few constraints due to these

design requirements, so that almost any sort of control system

and controlled plant can be represented with relative ease.

Nevertheless, the use of the emulation is most convenient when it

is consistent with the underlying design concepts. The specific

implementation of the key concepts is described in Section 4.

2.1 Modular Hierarchical Real-Time Control Systems

The general concepts of hierarchical control are described

in Albus, Barbera and Nagel (1980). An illustration of a

hierarchical control structure is shown in Figure 3. When a

command is entered at the top of the hierarchy, it is

successively decoded (or interpreted) into more and more detailed

instructions at the lower levels of the hierarchy, until the

lowest levels of the hierarchy provide an interface with the

physical process being controlled. This accounts for information
0

<

*
propagation down the hierarchy. The sensory-interactive

hierarchy also provides for the crucial upward flow of sensory

The diagram does not depict other data flows, such as data
base interfaces.

Page 10

COMMAND

SENSORY
PROCESSING
HIERARCHY

CONTROL
HIERARCHY

SENSING ACTUATION

FIG. J. HIERARCHICAL CONTROL STRUCTURE

Page 11

information about the physical process being controlled; this

information is abstracted (digested) as it passes upward in the

hierarchy. Each level of the hierarchy must reconcile its

commands from above with the actual state of events below in

order to send appropriate sub-commands or corrective actions to

the level below it. Such a system is most efficient when errors

are handled on the lowest level at which there is command

information that is sufficient to formulate appropriate

corrective action: "local" errors are corrected at lower levels,

while "global" errors are corrected at higher levels. This

explicit use of feedback at all levels of the hierarchy and the

hierarchical decoding of commands distinguish the

sensory-interactive hierarchical approach from the more

traditional preplanning approach where errors typically cause

emergency shutdowns which necessitate complete replanning or

rescheduling. Feedback occurs at all levels of the

sensory-interactive hierarchy.

The basic functions of a typical module can be summarized as

follows:

(1) Interpret command inputs from the level above.

0

(2) React to acknowledgements and other sensory information
passed up from the level below.

(3) Generate subcommands for the level below.

(4) Generate acknowledgements and pass digested sensory
data to the level above.

Page 12

As viewed from a given module, note that (1) and (2) appear as

inputs while (3) and (4) appear as outputs . In addition, each

module must provide (at least) for the appropriate

time-sequencing of its operations; i.e., it must maintain

responsiveness to its inputs without sacrificing continuity or
*

fidelity of its output computations.

In order to comprehend the operation of such

sensory-interactive modules and thus to facilitate design and

testing of the whole hierarchical control system, it is desirable

to impose a discipline on the internal structure of each module.

A generalized finite state machine structure is both simple and

sufficiently general for this purpose.

2.2 State Machine Concepts

Each module is assumed to be represented by a generalized

finite state machine. The module samples its inputs and produces

new outputs at every cycle. This assures that input changes will

not be unintentionally ignored; that the data to maintain

responsiveness is available; and that the outputs are available

on every cycle. The response latency thus depends on the

(worst-case) cycle time of the machine. The operation of the
0

machine is broken down as follows?

*

This is a classical problem in the design of any real-time
system, and in particular, computer operating systems.

1. Sample current inputs

2. Compute next state

3. Compute next output

Page 13

*

The formal definition of a finite-state-sequential machine

requires that the set of possible input values be finite, that

the set of states and output values be finite, and that the

next-state and read-out functions be representable as boolean

functions. Taken literally, these conditions are too restrictive

for the class of applications we wish to consider. The

generalized state machine concept that is employed in the HCSE

retains the elements of the formal definition but broadens the

interpretation in the following ways:

1. Inputs and outputs may include real-valued variables
and integers.

2. Next-state and read-out functions are "effectively
computable", i.e., they may be implemented by
subroutines or procedure calls.

The term "threshold finite automation" has been applied to this

generalized state machine. Note that the dimension of the state

set is still finite (in the HCSE it is approximately A**31 where

A"5 0 , so this restriction is not too significant in practice).

The implementation of state machines is somewhat simplified

by adopting the convention that the next state and output remain

unchanged unless one of a (usually small) set of conditions in

*

Arbib, M.A., and Bobrow, L.S., Discrete Mathemati cs . U.B.
Saunders Co., Philadelphia, PA., 1974.

Page 14

the current state and inputs occurs. When the current state is

given, only a modest number of transition conditions (or "trigger

conditions") need to be tested in order to determine the next

state. This observation greatly reduces actual computing time?

however, it is often the case in practice that although the

trigger conditions involve only a small number of inputs

variables, the actual computation of the next state and output

f unction may also involve a larger set of other variables that

never in themselves cause a state transition. In a strict sense,

these variables must also be regarded as inputs? in the HCSE,

the term "input" is intended for those input variables which

appear in the trigger conditions, while "input parameters" are

intended to apply to the non transition-causing inputs.

Similarly, "outputs" of a module are seen as triggering state

transitions in other modules, while "output parameters" provide

non transition-causing variables to other modules. This

distinction is purely a matter of style, and no internal

distinction is made within each pair of terms in the HCSE.

In the general concept of a state machine, we are mostly

concerned with deriving proper input and output values for .a

particular machine. However, a certain amount of internal

processing must take place before output values can be derived

from the inputs. The variable "internal" is intended to

accomodate such internal processing by retaining the intermediate

values which represent the internal state of a module. An

"internal" variable is neither an input nor an output from the

Page 15

module in which it* resides. Therefore, its value is totally

transparent and inaccessible to the other modules in the

emulation. Given this, "internal" variables should only be used

whenever the value of a variable is not to be transported beyond

the confines of the parent module, i.e., an internal counter.

Remember that a module only goes through its state table when its

inputs change. Thus, if an internal variable is all that has

changed on a particular clock tick, the FSK will remain 'asleep'.

Another variable that accomodates internal processing is the

"state" variable. However, a "state" variable is both output and

input to the FSM that declares it. The "state" variable may be

used to monitor the internal process of a module.

State machines can be specified in a variety of ways- and in

general, there exist a large number of equivalent ways to

implement the same module function. Usually, a module with a

smaller state set and fewer input and output variables will be

more efficient than one with more input, output, and state values

(here, we are referring to the states of the machine, not "state"

variables.) in the sense that fewer transition conditions need be

tested. However, in some cases the next-state and output

computations may be simplified when more input, output, or state

values are used. For these reasons, it is inadvisable to become

0
particularly attached to a specific module description. Three

common methods of specifying state machines are through state

transition diagrams, state tables, and ladder diagrams.

Conversion of these formats into HCSE form is reviewed in Section

Page 16

8 . 2 .

2.3 Shared Memory Synchronization

The shared memory contains the current values of all

variables which are shared between modules. These include (by

convention) the current state of each module, its input, state,

and output variables, and input and output parameters. In order,

for the common memory to serve as a communication exchange

between modules, read-write and overwrite conflicts must be

avoided. One way to do this is time-slice synchronization. A

fixed time-step is chosen (usually based on the maximum bandwidth

requirements of the system) . Each time-step or "tick" is

subdivided into a read and a write cycle. During the read cycle,

each module that requests memory access is permitted to read all

of its inputs, input parameters, and state variables and no

module may write into common memory. During the write cycle, any

module which is ready to write is permitted to write all of its

state variables, outputs, and output parameters, but no module

may read from common memory.

The emulation achieves this effect in a way that is general

enough so that the user retains considerable control over its

0

*

This is the "macro-state" of the module? it is not the
complete state in a rigorous sense because other local
information (e.g., in the computational procedures) is retained
between time-steps in order for the module to proceed, in the
form of internal variables that are not shared.

Page 17

real-time performance. All modules which are scheduled to read

from memory on a given "tick" may read variables in any order

upon request (the actual order being determined by the VAX/VMS

operating system) , but no module is permitted to write on any

cycle until all modules have completed their read-requests. Then

all modules which are scheduled to write will write their output

variables to common memory. In order to prevent overwrites, no

two modules should have the same variable as an output. The

foregoing events take place asynchronously as fast as the VMS

operating system will allow, and the worst-case time determines

the maximum emulation speed since the emulation runs on a single

physical processor.

The occurrence of the next clock "tick" is determined by the

interactive display module. In single-step mode, the next "tick"

(i.e., beginning of the next "read" cycle) occurs when the user

issues a keyboard command. In variable-rate real-time mode, the

user specifies the ratio of clock time to emulation time, and the

elapsed time on the system clock determines the next tick. In

free-running mode, the next tick occurs immediately upon

completion of the write cycle? the actual emulation speed may

*

The total number of independent processes, the maximum number
of common memory variables for each process, and the time for the
operating system to serve a single process determine the actual
maximum speed. The VAX/VMS operating system updates a process
status every 10 msec.

**

If the specified time has already elapsed, the next tick
occurs immediately.

Page 18

depend on the loading of the system by other users in this case.

The user also has several means with which to control when

each module is scheduled to read or write. To start with, each

module is assigned a basic scheduling interval when it is built

into a VMS process as described in Section 4.3. A low-level

module might be scheduled every tick, while a high-level module

might be scheduled every 50th tick. The scheduling intervals

have a significant impact on the running speed of the emulation.

Furthermore, pre-defined variables are provided within each

module to represent the effects of computing and communications

delays. The compute-delay variable, which may be set depending

on which computation a module executes or simulates on a given

step, has the effect of delaying the writing of the outputs to

common memory by the number of ticks which it specifies and of

delaying subsequent reading from common memory? the

communications-delay variable has the effect of delaying the

output of a module by a fixed amount without affecting its

scheduled reading rate.

Delays significantly affect the way in which modules are

designed, because it cannot be assumed that current outputs will

be read immediately by other modules. The intended recipient

must acknowledge having received the output, or further output

changes may be made without being seen by the receiver due to

scheduling delays. A related observation is that inputs must be

removed after they are acknowledged, or they will be re-executed.

Unless every module is scheduled at every time-step, these

Page 19

problems are not solved by- common memory synchronization alone.

2.4 Simulation vs. Emulation nodules

Simulation modules, in contrast to emulation modules,

represent the input/output relationships of segments of a

controlled system, but not necessarily their internal structure.

Usually, simulation modules represent non-digital (e.g.,

electromechanical, mechanical, chemical or thermal! parts of the

controlled process, but they may also be used to represent

digital subsystems or analog control system components. The KCSE

module format is sufficiently general that simulation modules can

be programmed in exactly the same way as emulation modules.

However, the actual content of simulation modules will usually

differ from that of emulation modules, and in order for emulation

modules to be most effective, certain principles should be

observed in composing the module.

Input and output variables of a simulation module should be

chosen to correspond to signals which are readily identifiable

and measurable in the actual physical control system under

design. Typically, these can be classified as actuation or

"control" signals, and sensory or "acknowl edge " signals. The

boundary between emulation and simulation may be drawn either

between a central processor and device controller, or between the

device controller and the physical process, depending on t u -'

desired level of detail. The most important principle for

Page 2C

selecting inputs and outputs is that parameters or variables from

a simulation module should not be passed into an emulation module

(and vice versa) unless there is to be a corresponding explicit

measurement or control process in the actual physical

implementation. In this way, errors in control system logic will

be discovered much more readily. The conceptual model of plant

behavior employed by the control system designer may or may not

be consistent with the actual state equations governing parts of

the plant, as incorporated in a simulation module, and the

structure of the emulation/simulation should allow for this

source of error if it is to be useful for control system design.

The input/output relations of a simulation module should

represent as closely as possible the input/output relation of the

physical subsystem being simulated. Often, such systems may be

viewed as having a number of operating regimes (discrete states),

where state transitions depend on the evolution of continuous

variables (continuous state) within each regime. To simulate

this situation, the (discrete) module states are placed in

correspondence with the operating regimes. The module is

scheduled to read and write at regular intervals. Each time the

inputs are read, a variable-time-step integration procedure

appropriate to the current state (i.e., regime) is called, and

continuous variables are integrated forward one time-step.

Finally, the conditions for switching between regimes are tested,

the discrete state is updated, and the appropriate outputs are

generated. Functions which return the current number of ticks,

Page 21

the tick-spacing, and the system clock time are available to the

user in order to properly synchronize the simulation. In the

emulation/simulation of an event-driven control system, only the

simulation modules will call these functions.

A simulation module may communicate global parameters to the

other simulation modules (e.g., to determine when two

independently-simulated physical objects come into contact) even

though the variable is not sensed. Usually, the collection of

all simulation modules constitutes a self-contained model of the

environment, plant, or controlled system while the collection of

all emulation modules constitutes a self-contained model of the

feedback controller. Variables are passed between the distinct

sets of simulation and emulation modules only if they correspond

to explicit physical quantities which are measured or controlled.

While all modules communicate information through one shared

memory, the shared memory in the KCSE should be effectively

partitioned (in a well-designed application) into a part

corresponding to the emulated control system common memory, a

separate part for the shared simulation variables (representing

interaction between subsystems of the controlled plant), and

interaction variables which represent sensor measurements and

actuator command values.

Page 22

3.0 SOFTWARE WEKVIEW AND GENERAL USK3E

Section 3.1 provides a user's overview of what software is

contained in the emulation, while Section 3.2 describes in

general terms how the software is used. The user should verify

that the software described in this section is available on his

VAX 11/780 VMS system before attempting to apply the operating

sequence described in Section 4.

3.1 Software Overview

This section describes the principal software components of

the HCSE, from the user's perspective. A complete set of

filenames and libraries is listed in Section 8.1 of this manual.

More detailed documentation of these programs may be found in the

Programmer's Manual.

It is convenient to assume that the operational software is

organized as a main directory which will be termed the

HCS E_LXB RARY » along with three other libraries (of object files)

termed the common memory library (CM_LIBRARY) , the Praxis library

(PRAXIS_LXBRARY) and the BP library (BP_LXBRARY) f which is a

utilities library. These libraries are accessed by the VMS

linker through a linker options file in producing executable

process images prior to running the emulation. Mostly, the

*

BP library is a BBN-developed library supplied to MBS under *

one-site license agreement. Need for this library may be
eliminated in future versions of the HCSE.

Page 23

executable files contained in the HCS E_LIBRARY are discussed in

this manual, • although references will be made to a few library

routines which the user may find helpful in composing

emulation/simulation modules.

Command f il es : Command files in the HCSE_LIBRARY include

FOREIG N. COM
BBGIN.COM

FOREIGN defines a set of VMS foreign commands which the user

executes, as described in the next section, to compose, run, and

evaluate an emulation. One of these foreign commands is the

BEGIN command, which starts a named VMS process with privileges

and options appropriate to the emulation; the BEGIN command

invokes the BEGIN.COM file. The other foreign commands merely

invoke executable process images which are described in the

following paragraph.

Executa ble f ile s: Executable files in the HCS E_LI3RARY

include

PARSER. EXE
DICTION. EXE
BUILDER. EXE
DISPLAY. EXE
FORCEX.EXE
SMERGE. EXE
SIMLIST. EXE
SUMMARY. EXE

With the exception of DISPLAY, these images are executed

(normally in the sequence shown) by the foreign commands PARSE,

Page 24

DICT, BUILD, KILL, SMERG E, SIMLIST, and SUMMARY, respectively.

DISPLAY is executed during the emulation using the foreign

command DISPLAY. The Praxis compiler is invoked by the PRAXIS

command, defined as a system global symbol. The list of

directories searched by the Praxis compiler are defined as system

logical names PRX$SYNOPSIS_0 through PRX$SYNOPSXS_4

.

Qbj ect files : Object files obtained from the CM_LIBRARY and

the PRAXIS_LXBRARY directories in the course of executing the

foreign commands, command files, and the display program include

VAXDEF.OBJ
SHRMEM. OBJ
SHAREOUT. OBJ
RECREAD. OBJ

VAXDEF, SHRMEM, SHAREOUT, and RECREAD contain procedural
*

primitives which implement common memory, and VAXRUNTIM. SPS

contains Praxis synopsis of VMS and Fortran library procedures

used in the emulation.

if

The file VAXRUNTIM. SPS is located in a synopsis subdirectory
off the same main directory which holds the PRAXIS_LIBRARY

.

Page 25

3.2 Description Of Software Usage

Prior to attempting to run an emulation, as described in

Section 4, the user should personally confirm that the

directories, libraries, and files described in the previous

subsection (3.1) exist on the system. In addition, if the

tick-spacing is to be adjusted, the Programmer's Manual should be

consulted. *

After these initial steps, the process of coding, running,

and analysis is achieved by a sequence of straightforward steps:

1. Source code for each module is entered by the user in
finite-state machine (FSM) format using any available
text editor.

2. The state machine code for each module is parsed to
produce a corresponding Praxis module (PARSE command),
which is then compiled (PRAXIS command) to produce an
object module and a synopsis file.

3. Sets of Praxis object modules are linked together, with
appropriate scheduling delays, to form concurrently
executable VMS processes (BUILD command).*

4. A data dictionary for the full set of modules is
produced in order to verify consistency of type
declarations and variable names among modules (DICT
command). This is useful for initial debugging
purposes

.

5. Each emulated process produced in step 3 is started up
(BEGIN command). Lastly, the DISPLAY process is run
(DISP command) and the emulation begins.

6. The user interacts with the display process at the
terminal to monitor and control the progress of the
emulation

.

*

Separate VMS processes may be used to emulate execution or.

different physical processors; logging and data analysis is cr. a

per-process basis.

Page 26

7. Upon completion, the user causes each process to exit
gracefully (KILL command).

8. The user may list logging files (SIMLIST command),
merge them (SMERGE command) and/or produce summary
statistics (SUMMARY command)®

A very simple example of this sequence is provided in Section 5.

Of course, the above sequence of steps does not include the

process of troubleshooting in cases where errors may arise? this

is discussed in Section 6.

Page 27

4.0 OPERATING SEQUENCE .-

The purpose of this section is to describe in detail each

step in the use of the hierarchical control system emulation as

outlined in Section 3.2. The most demanding step, by far, is the

formulation of state-machine code for each module of the

emulation, which is necessarily the user's responsibility. The

global issues of any particular application cannot be adequately

adaressd in this manual; for this purpose, the HCSE Appl i

c

at ions

Gilidfi provides an example of significant complexity. This manual

is restricted to specific issues that are generic to a broad

class of applications, and only a very simple illustration is

provided in Section 5 in order to clarify the format of user

interactions at the terminal.

4.1 Entering State Machine Modules

General state machine concepts were summarized in Section

2.2. In the HCSE, a state machine module is entered by the user.

A source file of type FSM uses the specific format described
*

below, using the VMS EDT (EDIT) facility or any other editor.

The module format consists of an initial part with several

individual subsections which are initialized by statements

beginning with double-slashes (//) . A second part follows

*

Although the emulation must be run on a DEC-suppo r tec
terminal, or equivalent, source files may be entered from ar."
terminal for which a text editor is available.

Page 28

consisting of a collection of procedures written in Praxis which

implement the detailed (or micro-state) calculations of the

next-state and read-out maps. In parsing this source code, the

initial section is translated into Praxis code. The parser also

adds a suitable module template which provides read/write

operations, and carries through the Praxis procedures from the

second part of the source file unchanged. Among the advantages

of this approach are that the source file has a simple standard

format, that type-checking between modules can be preserved, and

that the user is not obliged to repeat any tedious formatting

details that are common to all modules of the emulation.

FSM Source File Format s The general format of an FSM module

is shown in Table 1. The first part consists of lines which

define types and declare input, output, state, and internal

variable names in terms of these types, followed by a sequence of

condition-action lines that implement rows of the state table.

(The procedure for converting state-machine descriptions into

state tables is summarizd in Section 8.2). Each line has a

similiar structure

//identifier-token (space) declaration-token (space)
type-token (space) I comment-text

where any one of the tokens may be blank (empty) . The

identifier-token may be:

(empty) section already initialized
by a previous ident if er-token
or the line is blank

Page 29

TABLE 1. FSM MODULE FORMAT

//name MODULENAME
^

//input INPUTVARIAB LE TYPE

• • •

//inparameter INPUTPARAMETER TYPE

• • •

//internal INTERNALVARIABLE TYPE

... \ Declaration Section

//outparameter OUTPUTPARAMETER TYPE
j

l//output OUTPUTVARIABLE TYPE I

• • •

//preprocess STATEMENT

• • •

//postprocess STATEMENT

//conditions CONDITIONl ; CONDITION2

• • •

//actions STATEMENT1 ; STATEMENT2 ; .

[condition-action pairs] \

//multimatch STATEMENT

//nomatch STATEMENT

//procedures

procedure PROCEDURE_l ()

• • • \

end procedure {PROCEDURE 1} /

|state-table Section

Procedure s Section

[more procedures]

procedure PROCEDURE N()

endprocedure { PROCEDURE^N;

[end of file]

Page 30

name

include

type

input

inparameter

internal

state

output

©utparameter

preprocess

postprocess

conditions

actions

multimatch

nomatch

procedures

One or -more

module name (must agree with
filename of FSM module)

type declaration file

type declaration

input variable declaration

input parameter declaration

internal variable declaration

state variable declaration

output variable declaration

output parameter declaration

preprocessed input variable
declaration

post processed output variable
declaration

conditions for a state transition

actions defining next state and
output computations

actions defining next state and
output when multiple conditions
are satisfied

actions defining next state and
output when no condition is

=- satified

denotes beginning of procedures
part of FSM module? all code
after this line is strictly
Praxis r.

spaces delimit the remaining tokens. The

declaratien-teken may bei

Page 31

nane_declaration module name, if the identifier token
is "name"
file name, if the identifier is

"include"
user-defined type name, if the
identifier is "type"
variable name, if the identifier
token is "input", "inparameter",
"internal", "state", "output",
or "outparameter

"

statement_decl aration compound statement, if the
indentifier token is "conditions",
actions", "multimatch", "nomatch",
"preprocess", or "postprocess"

(empty) if the identifier token is
(empty) or "procedures"

Variable names, user-defined type names, and module names

are strings of 29 or less characters that are valid as Praxis

names (this excludes control characters, names that begin with

nonalphabetic upper case symbols and Praxis reserved words) .

Type declaration files can have any file name acceptable to

VAX/VMS systems. A compound statement consists of simple

statements separated by semi-colons (up to a total of less than

132 characters per compound statement with no linefeeds, carriage

returns, or other control characters). A simple statement may be

either a logical expression (only when the identifier token is

"conditions") or a valid Praxis statement (otherwise). A logical

expression in this context is the same as a boolean expression in

Praxis, with. the important generalization that logical operations

are considered to be vellrdefined between string variables of— *

different lengths ; thus the expressions

Page 32

string 1 = "long-or-short-word"
string 1 <> "any thing_else"

have meaning when string 1 and string 2 are (in general)

different-sized arrays of characters.

The type-token is only recognized when the identifier-token

is "type", "input", "inparameter", "internal", "state", "output",

or "outparameter " . In these cases the declaration-token (a name

declaration) and the type-token must both be present. The type-

token can take values:

char Praxis character variable or
parameter

integer_l Praxis one byte integer
variable or parameter

integer or integer_2 Praxis two byte integer
variable or parameter

integer_4 Praxis four byte integer
variable or parameter

real or real„4 Praxis four byte real
variable or parameter

real_8 Praxis eight byte real
variable or parameter

logical or legical_l Praxis one byte logical
variable or parameter

logical_2 Praxis two byte logical
variable or parameter

logical_4 Praxis four byte logical
variable or parameter

*

This greatly enhances the clarity of the source code. The
parser actually converts such expressions into valid Praxis
functions in a later step.

Page 33

bool ean Praxis boolean variable or
parameter

pchar Praxis character variable or
parameter initialized $<NUL>

string packed array of up to 31
characters (not a standard
Praxis variable type)

or

user-defined type Praxis type declaration
(can be one of three permissible
data types: alias, array, or
structure)

The first ten items in the list above are recognized by the

parser as basic data types. The remaining items (except for

user-defined types) are data types commonly used in FSM modules

and their subsequent definitions are stored in a reference file

named STANDARD. ISM located in HCSE_LI3RARY. The types declared

in this file along with the basic types described above are

automatically incorporated into FSI1 modules (by the parser) prior

to the appearance of any type declaration lines in the source

code

.

In addition, the user has the capability to declare his own

data types in terms of the predefined types presented above

and/or other user-defined data types that were previously

declared. Type definitions must pertain to either an alias,

array, or structure data type construct and conform to the

equivalent Praxis syntax (refer to the Praxis primer in Section

8.3). The three forms allowable are:

Page 34

class: ALIAS

//type (al ias_name) (type_name) [initially (init„val ue)

1

where alias_name is the alias type being defined? type„name is

either a basic type or a previously declared user-defined type

which the alias type is being defined in terms of? and

init_value is an optional initial value assigned to the type,

(Initialization is only provided for alias types.)

class? ARRAY

//type (array_name) [packed] array (no_elements) of (feype„name)

where array_name is the name of the array? packed is an optional

parameter which indicates that the allocation of array elements

in storage is packed or most efficient (unpacked is default)?

ne__elements is the number of elements? and type_name is either a

basic type or previously declared user-defined type.

class: STRUCTURE

//type (structure„name) structure
(component_name) i (type_name)
(cemponent_name) s (type„nam@)
(component_name) : (type_name)

endstructure

where structure„name is the name of the structure?

component_name is the name of an individual component? and

type_name is a basic or user-defined type which can be used to

define a component. The number of components in a structure

definition" is not restricted.

Page 35

The user may place popular user-defined type declarations in

a separate file and have FSM modules access these type

definitions through the INCLUDE file statement. This eliminates

the waste of repetitiously defining the same data types in a

series of FSM modules. The //INCLUDE statement may appear

anywhere within the initial portion of the FSM module; however,

the type definition file must be attached (included) before any

of its definitions appear in type or variable declaration

statements in the FSM module. To ensure against a fatal

compilation error, it is best to place the //include line prior

to all type declarations in the FSM module. The type declaration

file must reside on the same directory where the FSM modules are

or directories whose logical names are FSM$INCLUDE_0 to

FSM$INCLUDE_4.

A short example to clarify the use of user-defined types in

a FSM module has been provided.

//type pinteger_2 integer_2 initially 0

//type longstring packed array (512) of pchar
//type db_mailbox structure

mb_length : pinteger_2
mb_seqno : pinteger__2
mb_time : integer_4
mb_data : longstring

endstructure

Note that the types "pinteger_2" and "longstring" were

defined before they could be used in the structure declaration.

The two declarations may have been defined in another external

file and attached to the above list of type declarations through

the "//include (file_name)" statement. However, this approach is

Page 36

only valid if the separate file is included before the structure

type is declared. If the first two types were not declared

before their appearance in the "db„mailbox" declaration, a

compilation error would have resulted. The rest of the types

used in the module are either basic types declared by the parser

(integer_2 and integer_4) or types defined in the file

STANDARD. ISM (pchar) .

The comment delimiter in the first part of an FSM file is a

vertical bar (I)? all comments and the end-of-line are passed

through as text by the parser whenever the comment delimiter is

present. In the procedures part of the FSM file, the Praxis

comment delimiter (double-slash) should be used after the line

"//procedures" which inititates the second part of the FSM file;

double-slash is no longer recognized by the parser as a line

del imiter

.

In summary, the structure of a FSM source file consists of a

first part where lines beginning with a double-slash indicate the

action to be performed. This initial part consists of a

declaration section starting with a module-name line followed by

lines which define all user-defined types, and then declare all

variables used by the FSM module. Data type declarations are

accomplished by attaching external type definition files to the

FSM module and/or defining the data types themselves within the

module. .Fallowing type definitions, inputs, input parameters,

internal variables, state variables, outputs, and output

parameters are declared. The current implementation of the

Page 37

parser does not require that declaration lines appear in any

specific order, but a user-defined data type must be defined

before it is used in a variable declaration or in another data

type declaration. In any case, it is advantageous to follow the

order in which the type definition and variable declaration lines

are specified in Table 1, for it greatly enhances clarity. The

second section of the first part normally consists of optional

preprocess statements, followed by as many condition-action sets

as there are lines of the state table, followed by optional

multimatch and no match actions, followed by optional postprocess

statements, and ending with a line which inititates the

procedures declarations. The second part of an FSM source file

is written strictly in Praxis and normally consists of a set of

procedures. The file ends with an end-of-line (EOL) character,

which is generated automatically by the carriage-return key on a

terminal; no other terminator should be used.

Composing Source Files : In composing FSM source files, a

number of additional considerations can be used to produce

compact modules and avoid programming errors. The following

factors should be carefuly noted by the user.

(a) Upper and lower case : Upper and lower case variable

names are not distinguished by Praxis, except in the values of

constants or variables of type "char" and "pchar *
. For the

convenience of the user. all alphabetic string val ues are

converted to upper case so that the string "<abed" is regarded as

equal to the string "ABCD".

(b) P redecl ared variable s; All variables and parameters

employed in condition and action statements of an FSM source file

must be pre-declared, with the exception of certain variables

that are pre-declared by the parser and are available in all

modules. The pre-declared variables which may be accessed by the

user are:

Explanation

curs string current state of the
module

nexts string next state of the
module

f irst„entry boolean flag set true only on
the first cycle of a
module

compute_delay integer simulated computing-
delay in ticks

output„delay integer simulated output
delay in. ticks

The (implicit) identif ier-token for these variables should be

treated as "internal". The global variable name_curs, where

"name" is the module name, is the global variable written to

common memory corresponding to the local variable "curs".

The role of "curs" and "nexts" is obvious. By predeclaring

the type of the state to always be "string", the user is free to

choose names for the states that are convenient and meaningful in

the context of his application. The number of possibilities is

virtually unlimited. Using state names that have meaning greatly

Page 39

simplifies programming and reduces programming errors.

By testing the variable "f irst_entry " in a condition

statement, the user can predefine the initial state and internal

parameters of a module in the corresponding action statement so

that the module is self-initializing.

Output_delay is the number of ticks that the output is
*

delayed each time a module is scheduled. This emulates a

communications delay; if the output delay is greater than the

scheduling delay, the module may receive new information from

common memory before its previous output has been written.

Compute_delay is the number of ticks (in addition to the output

delay) that the output is delayed by emulated computation; this

variable may be defined within a procedure so that the delay

depends on which state-transition is begin emulated. In contrast

to the output-delay, a compute-delay will also delay the

scheduled reading of variables from common memory whenever it is

longer than the scheduled delay. In this case, the next read

cycle occurs immediately upon expiration of the delayed write-

cycle. The initial value of these variables is zero ticks (on

every activation).

(c) Eurther dlasussJLsn af the "state" j^ariahla: The values

of state variables are both written into and read from common

memory. Although this manual has emphasized that no module

*

The scheduling interval is specified in the building step (see
Section 4.3) .

Page 4C

should input and output the same variable, there are moments when

the internal activity of individual modules needs to be monitored

to ensure that these modules are running correctly (or running at

all). For example, in the current implementation of common

memory, an FSM would go to sleep if its input variables do not

change. This is a practical implementation since, in theory,

inputs of a state machine determine its outputs; and if the

inputs and outputs of a state machine do not change, it serves no

purpose to continue cycling through the state transition table of

that machine. However, with the utilization of internal

variables in the HCSE, output values may change in response to

internal activity such as an internal counter. The situation

would result with the module being put to sleep, even though the

states of the FSK are still in transition. This is a

common occurrence in the HCSE and one of the motives behind

designing the "state" variable. By declaring locally processed

variables as "state", intermediate variables will be represented

as input values which will subsequently cause module deactivation
*

(that is, if state variables do change).
/

(d) Local and global yariablnn: Varables declared within

procedures are local to these procedures. Variables declared by

the identifer-token "internal" are local to the module produced

by an FSM source file but are global with respect to the

t?

Another way to activate a sleeping FSM is to call the
subroutine CH_UAKE_FSn. (see entry (k) for subroutine
descriptions

)

Page 41

procedures within it. A variable declared as "inputs",

"inparameters", "outputs" or "outparameters" are stored in common

memory and hence are available to all other modules of the

emulation. Variables declared as "state" is stored in common

memory, but the variable is only intended for a single module to

read and write. The predeclared variable "name_curs" is also

stored in common memory at each write cycle and is available by

this name to all other modules ("name" denotes the name_token of

the FSM file).

(e) User-defined types; User-defined type declarations

between different modules should be consistent. If individual

modules define the same type name with different attributes, only

the first definition passed into common memory will be used in

the emulation. In addition, users are not permitted to modify

the type definitions of basic types (see section 4.1). Any

efforts to do so will be ignored. In either case, the

appropriate error message will be output to the screen while the

emulation continues to run unhindered.

(f) Variable-naming in FSM source files : A variable of the

same name and type identified as an "output" in one FSM source

file and "input" in another FSM source file will automatically be

passed between them through common memory in the emulation. This

is all that is required in order to transmit information between

two modules through common memory. Qtherw

i

se . common memory is

sniirely transparent thfi user . While this feature is very

valuable, it also requires that a variable-naming convention be

Page 42

adopted in advance so that different users will write modules

which are compatible. Even slight differences in variable names

(aside from case) will result in communication failure? the

variables will be stored in common memory# but under different

names; if two modules happen to use the same variable name for

different purposes# an unintended communication may occur

(although this will not happen if one of the variables is

identified as "internal"). Only those variables identified as

"inputs"# "inparameters"# or "states" will be retrieved from

common memory on each scheduled read cycle# and only those

variables identified as "states", "outputs", or "outparameters"

will be written on each scheduled write cycle. Undeclared common

memory variable names used in a module, will result in fatal

compilation or linking erors. The data dictionary capability

(Section 6) is very valuable in identifying such discrepancies.

There should never be any need to declare the same variable as

both input and output of a module (except in the case of "state"

variables). To do so will result in errors during compilation

and linking. No two modules should declare the same variable as

a state, output# or outparameter . This will not necessarily

produce error messages but may result in undetected overwrite

conflicts in common memory.

(g) Syntax of, condltion /action statements; In Praxis, the

logical operator (-)

#

used in condition statements and

declaration sections# is distinguished from the equivalence

operator (:-)# used in action statements# by a preceding colon.

Page 43

Condition statements are sequences of boolean expressions

(separated by semicolons) while action statements are sequences

of complete Praxis statements (also separated by semicolons); a

condition statement line is not a valid line of a Praxis program.

(h) Procedure arguments ; The arguments lists of procedures

declared in an FSM source file should always be empty, as denoted

by the empty argument list "()" following the procedure name in

the declaration and in all procedure calls within action

statements. In view of the scoping rules (see (d)), procedure

arguments should never be necessary. On rare occasions, it is

useful to declare a variable as global to all procedures in an

FSM source file without declaring it as an "internal" variable,

e.g., a two-dimensional array. This can be achieved by including

a valid Praxis declaration statement prior to the first procedure

declaration in the FSM file.

(i) Line continuation : No line continuation character is

provided in the first part of an FSM source file. Up to 132

characters are permitted on a source file line, however. In

almost all cases, statements can be separated to appear on

succeeding lines with the initial statement containing the

identifier-token. In fact, a block of equivalent FSM statements

needs only the first line to contain the identifier-token; all

succeeding lines with blank identifier-tokens are automatically

associated with the last identifier specified. However,

identifier-tokens may appear in as many lines as the user wishes.

Thus, a long state transition condition may appear on multiple

Page 44

lines following a "conditions" token and/or multiple actions for

a given condition can be stated on multiple lines following an

"actions" token. However, an action line is always associated

with the nearest preceding set of condition lines.

(j) Use of preproces s and postprocess variables ; Preprocess

statements are useful when different values of a particular

function of the input and current state values may trigger

different state transitions. Defining the value of a declared

"internal" or "state* variable to equal this function, the values

of the variable may be tested in successive condition statements

— e.g., state transitions may depend on the range of the sum of

two real»valued input variables. Similarly, part of an output

computation nay be common to all state transitions and thus may

be most readily placed in a "postprocess" statement.

Intermediate parameters in this computation must be declared as

internals, states, or through a procedure call.

(k) Default for multi.ira.fcoh, and nomnich: If no "multimatch"

or "nomatch" actions are provided and one of these conditions

occurs, then no change will occur in the module state or

parameters. If possible, the conditions statements of a module

should be complete and mutually exclusive.

(l) External procedures: Procedures and functions from the

libraries described in Section 3.2 are automatically retrieved

when they are called from within a module. The following are of

particular utility;

Page 45

TST (stc ingl, str ing2) : a boolean function which is true when the

value of stringl is equal to the value of string2.

HTKSSORT (real expression): A real function which returns the

square root of its argument. Similarly SIN, COS and ATAN2 may be

accessed.

MTH 1 $RATDOM (iseed) : a real function which returns a random

number approximately uniformly distributed between 0.0 and 1.0.

This is called with a seed which is initialized with an integer

and thereafter is called with the new seed returned by the

function, i.e., the seed must be 'static'. This is useful in

emulating random events.

CN_TICKS PACING (): a real function which returns the current

tick-spacing in seconds (tickspacing is currently 0.1 seconds).

C!I_GET_TI?IE (time, ticks ize) : a procedure which returns the

emulated time in ticks (integer) and the tick-spacing (real).

This is useful for wall-clock synchronization of the emulation

and for emulating scheduled startup times.

CI!_IJAKE_FSK (n_fsm_name, h_f sm_name) : A procedure whose function
0

is to reactivate non-cycling FSM modules. As discussed earlier

in (d), common memory was provided with a built-in safeguard that

would force an fsm module to sleep (become non-functioning) if it

continuously received unchanging input. A call to CM_WAKE_FSM

Page 46

from a module will override the above disabling mechanism and

force the module through its read and write cycles on a given

tick. The parameters n_fsm_name and h_fsm_name (name and integer

pointer of the fsm which is stored in common memory) are

automatically assigned when an FSM module is parsed.

CM_L0GGII3G_0N (newflag, prevflag) A procedure which controls

whether all variable transitions are logged in logging files.

The parameter newflag is a boolean variable passed into the

procedure and is true if system-wide variable logging is to be

performed. Prevflag is also a boolean variable which holds the

value of the previous logging state.

CH_LOG„VAR TABLE (iptr , newflag
,
prevflag) A procedure which controls

whether specific variables are logged. This procedure should be

used only when system-wide logging is disabled. The parameter

iptr is an integer handle which points to the location of a

specific variable in common memory. If newflag is true/ logging

for the variable represented by iptr will be enabled. Prevflag

indicates the previous logging state of that variable.

CM_DISABLE (fsm_name, fsm_handle) This procedure disables a

specific FSM module so that it can no longer cycle through its

state tables , even if input values change. The name of the FSM

integer handle pointing to the location of the FSM name in common

memory, is passed into the procedure.

Page 47

CK_ ENABLE (fsm_name, fsm_handle) This procedure enables a specific

FS.”. nodule that has been disabled. However, this does not

guarantee that a module will cycle through for it may be asleep

(caused by unchanging input values). The name and integer handle

are passed in as parameters.

Procedures for external file manipulation are also available

through the Praxis textio library (see Section 8.3). Further

library procedures and functions are documented in the

Programmer's Manual.

4.2 Parsing State Machine Modules (PARSE, PRAXIS)

The result of the previous section is a file or collection

of files in the user's current working directory with type FSM,

for instance

MODNAME . FS M ; ver s i on

The parser translates this into a Praxis source file in HCSE

format; the command syntax is simply

PARSE MODNAME

The parser will automatically use the mosM current version of

MODNAME . FSM, and will produce a file

MODNAME. PRX; ver sion

in the current working directory with a version number one

Page 48

greater than any previous file by this name. The parser checks

for type declarations errors and outputs several different error

messages. A common message is

Error: Non-existent (construct_component) type
(construct) name was: (name)
(construct_component) type was: (type)

which indicates that a type "name" was being defined in terms of

a "type" that did not exist. "Construct" indicates whether the

declaration was an alias, array, or structure definition and

"construct_component" describes the particular component being

defined (type, array element, or structure component). Remember

that a type must be defined prior to its appearance in other

subsequent declarations. If the user attempts to modify a basic

type (see section 4.1), the foilwing is outputted

Errors Illegal to redefine a built-in type
Type name was: (type)
Only first declaration will be used

with the "type" name returned to the user. If the user attempts

to redefine another user-defined type previously declared, the

parser outputs the error message

Error: Duplicate type declaration
Type name was: (type)
Only first declaration will be used

• 0

where the type name is again returned. If the parser cannot find

a specifie_d INCLUDE type declaration file, the message

Error in file name in an include statement
File name was: (file name)

Page 49

will be printed on the terminal screen. Errors in FSM syntax

will also cause an error message. If the parser is unable to

recognize a token in the FSM code* the message

Unrecognized token in line - (line text)
Token was (token)

would be displayed on the user's terminal returning the actual

line and token causing the error. All errors should be corrected

in the source file and the parser should be run again before

proceeding. If no error messages occur, the module should be

compiled with the command

PRAXIS MODNAME

The praxis compiler will automatically use the most current

version of MODNAME. PRX and produce files

MODNAME .OBJ; vers ion
MODNAME . SPS ? version

with appropriate version numbers in the current working
*

directory. The second file is a Praxis synopsis file used at

build time to define the calling sequence of the Praxis funtion.

Praxis error messages are described in Appendix E of the Pra xis

Language Reference Manual (see Section 1.3) and in the on-line

file PRAXIS.DOC. Errors should be corrected in the FSM source

file, but the PRX file produced by the Parser may be consulted

for assistance in debugging if necessary. All errors should be

See page 23.

Page 5 0

traceable to the FSM source file, as there are no known Praxis

errors that can be introduced by the parser*

4.3 Building Processes (DXCT, BUILD)

The previous steps are performed for each of the modules in

the user's application, resulting in an OBJ and SPS file for each

module. At this stage, it is desirable to produce a data

dictionary to assure that all of the modules use a consistent set

of variable names. If the module names are MODI* MOD2,

MODN, then the command

DXCT MODI, M0D2 , . . . , MODN

will display a data dictionary at the user 9

s terminal. The

standard keyboard commands CTRL/S, CTRL/Q can be used to suspend

or continue the listing? this may be directed to a file by first

issuing the system command

it

define/user SYS$OUTPUT DXCT.LXS,

which produces the file

DICT. LIS; vers ion

in the user's directory. The dictionary begins with a listing of

0

all user-defined types declared in the FSM modules, followed by a

SYS 50UTPUT may
filename DXCT.LXS

be defined to any file the user wishes,
was used in this example for convenience.

The

Page 51

set of variable descriptions which are referred to as dictionary

entries. The format of each dictionary entry is

(variablename) (type)
Written by : (modulename)

Read by : (modulename)
comments: (comments from variable declaration lines)

The dictionary program recognizes descrepancies between the type

declarations of different modules. If an equivalent type name is

given inconsistent definitions in two different modules, the

message

Conflicting definitions for a user-defined type in
(rcodul enamel) and (modulename2)
Type name: (typename)
Latest definition will be given

will be outputted. In addition, the dictionary program also

recognizes type conflicts in the variable declarations of

different modules. The message

Type conflict (module name)
Changing type from (typel) to (type2) of (variable name)

will be printed prior to the dictionary listing for each error.

In addition, the user should survey the list for spelling errors

(which will generate separate entries), variables that have no

reader or writer (which often indicates a failure to link two

modules through common memory), and variables with multiple

writers (which will lead to overwrite conflicts). Since comments

are carried through from all modules, inconsistent comments for a

variable may indicate that the same variable name or variable has

Page 52

been unintentionally given different meanings in different

modules. The data dictionary is very valuable for debugging.

All FSI! nodules should be corrected, if any of these errors are

noted, before proceeding.

The data dictionary only lists those variables which will be

communicated through common memory (i.e., inputs, inparameters,

and internals are not passed through common memory, nor are any

variables defined within the procedures of a module. Any errors

remaining in these variables must be determined at run-time or

through the logging list (Section 4.7), Since only those

variables in common memory can be monitored, the user must

declare all variables that are to be monitored as "state"

, "outputs", or "outparameters" in the module where they are

defined. Outputs of this type may appear legitimately in the

data dictionary with no readers.

Under VI!S, object modules must be linked in order to produce

executable process image files. The versatility of the HCSE is

greatly enhanced by the possibility of grouping the modules of an

emulation into subsets which are linked and later executed as

independent processes. The BUILD command constructs processes

from groups of modules.

The user is free to decide on what basis the set of modules

for an emulation should be partitioned into groups.

Traditionally, all modules might be linked as a single group into

one process. Another possibility is to link simulation and

Page 53

enulation nodules as separate processes. A third possibility is

to group nodules according to the emulated processor (computer)

on which they are to be implemented, i.e., a separate process for

each piece of hardware. Grouping by level in the hierarchy is

another possibility.

Since different processes may run on different terminals,

there is the possibility of grouping processes according to the

terminal on which they are to be run* For instance, one terminal

might run the emulation monitor display, while another might

emulate (at actual speed) an operator's console, graphic display,

or device interface. As described in the HCSE Appl icat ion s

Guide

.

a physical device with a serial interface (such as a

robot) can actually be operated by the emulation while running

its own process! The design of shared memory to support this

sort of operation enormously increases the power of the HCSE over

conventional simulation techniques.

Another consideration in grouping modules is that logging of

variables is done on a "per-process" basis, so that the timing,

computational burden, and common memory traffic within and

between different processes can be readily monitored.

In order to link MODI, ..., MODM, (M <N) , in the preceding

example into PR0C1, the syntax of the BUILD command would be

BUILD PROCl MODl/intervall , M0D2/interval 2 , ...,

*

The ellipsis (...) are only notational; this is not a feature
of 'the BUILD command.

Page 54

EODM/intervalm

v/here intervall , intervalm ace integer constants which

denote the scheduling interval (in ticks) of each module. As

described in Section 2.3/ this defines the rate at which each

module takes inputs from common memory. Unless the compute_delay

and output_delay variables are used (Section 4.1)/ a module

writes its outputs on the same cycle as it reads. Compute_delays

longer than the scheduling interval simply cause a postponement

of subsequent reads; in this case, synchronization of the

reading-rates of various modules may not be maintained

indefinitely during the emulation.

The scheduling intervals of various modules may

significantly affect the run-time efficiency of the emulation

because they strongly affect the rate and volume of data transfer

in and out of common memory. Thus, modules should be scheduled

at the lowest rate consistent with the task or subtask they

implement, with the required degree of responsiveness to errors

occuring in other modules, and with the emulated computing-time

requirements.

In the above example, the BUILD command generates a Praxis

file

PROC1.PRX;vers ion

in the user's current working directory. The builder also

constructs a linker options file

Pace 55

PR0C1 .OPT; vers ion

with the appropriate version number. The process-building step

is completed by compiling and linking the above module:

PRAXIS PROC1
LINK PROC 1/OPT

which produces the executable process image

PROCl.EXE

4.4 Running The HCSE

An emulation consisting of K process files PROC1, . .., PROCK

is run by starting each process and finally starting the DISPLAY

process, which is designed as a special process module that acts

like a probe for the ongoing emulation and provides a user
*

interface. The user issues commands

BEGIN PROC1
• • •

BEGIN PROCK

to start all of the emulation processes. In a hierarchical

control system emulation, only the top module will normally

proceed, while the others will wait in an "idle" state until

receiving their first commands. The BEGIN command reserves

sufficient system resources for the emulation. Next, the display

*

The emulation can be run in batch mode by omitting the
displ ay.

Page 56

process is run be issuing the command

DISP or DISPLAY

This process sends output directly to the user's terminal. The

first request is

"Hit any key to start display".

However/ the "E" and "D" keys are reserved for functions

(described later) which require the emulation to be running

before they can have an effect. These keys should not be pressed

to initiate the display. Doing so may stall the DISPLAY process.

After the initial key is struck/ the emulated time is displayed

and the user may proceed by typing "H* or "?" which will display

the text

"Your options ares

E - enter a new variable for display
D - delete a variable from the display
M - move display window up or down
up arrow - move display window up
down arrow - move display window down
right arrow - move display window right
left arrow - move display window left
C - change speed of emulation
S - single step simulation
G - go, resume continuous operation
Q - quit (exit program)
L - log a snap shot file
H or ? - this text

Hit any key to continue."

These commands have the following effects.

Page 57

Enter (E) : The display process then issues the request

"Variable name:"

to which the user responds with the name of a variable in common
memory whose value is to be monitored. The response to this
command may- include asterisks as wild-card characters — all

variables which match the remaining characters of the response
will be displayed. This display is then maintained in real time
until the user makes another request. The display is a list of

entries of the form

VARIABLETYPE VARIABLENAME VALUE

where the user can observe VALUE to change dynamically as the
emulation proceeds.

Delete (D)j The display process issues the request

"Variable to be deleted:"

and the remaining features of this command are like the "enter"
command; the specified variables are deleted from the display
list

.

Move Display Window (M): This command allows scrolling of
the display window and should be used when the display list
exceeds the vertical boundaries of the terminal screen. (The
current dimensions of the display screen are 23 lines down and 80
columns across.) After the "M" key is pressed f the display
process prompts

"How many lines?"

whereby the user's response may be any non-zero positive or
negative integer. A positive number will scroll downwards while
a negative number scrolls up. The move command should only be
issued after an "enter variable (E)" or "delete variable (D)"
command for only these two functions are capable of outputting a

listing large enough for scrolling to be required. In any case,
the window will not scroll pass the top nor the bottom of any
list. In- addition to the move command, the four arrow keys on
the terminal keyboard will shift or scroll the window one line or
column in their respective directions. Shifting sideways may be
required when information contained on one line exceeds 80

Page 5 8

columns. Like the move command, the four arrow keys will not
scroll and shift pass the edges of the list.

Chance Speed (C): This command allows the user to adjust
the ratio of real time to emulated time and thus to synchronize
the emulation to clock time (the actual clock is the VAX internal
time standard). In response to this command, the display process
issues the request

"Enter speed ratio (real time to emulated):"

The user responds with a real number that is the ratio of real
time to emulated time. that a larger number maXas the
etnul ation run more slowly . At some speed, depending on the size
of the example (and in a time-sharing environment, the current
computational demands of other users), the emulation necessarily
becomes compute-bound. In this case, the emulation proceeds at
its maximum possible speed whenever this is less than the
specified speed. Thus a response af, zero yields the maximum
compute-bound speed q£ emulat ion: this la £l££ ths. default tnada
qA emulation.

If the user wishes to perform detailed timing studies which
require synchronization with external devices, it is recommended
that he operate VMS as a single user® However, for casual
monitoring purposed, the user will also find the speed command
useful for slowing down the emulation in order to watch critical
transition sequences during debugging. The speed and the set of
displayed variables can be changed at any time during emulation.

Since the current value of the tick-spacing is set at 0.1
seconds, a speed ratio of 1.0 will typically result in values
changing on the display at a rate of up to 10 values per second,
which is often too fast to watch. Thus, ratios of 10.0 to 100.0
are generally best for viewing. Since all timing and scheduling
delays are normally specified in "ticks", it is recommended that
the user estimate these values so that a speed ratio of 1.0 gives
actual real-time operation.

S ingl e Step (S): Issuing the "S" command causes the
emulation to stop. The emulation proceeds one tick every time
the "S" key is depressed. Depressing a command key causes the
specified command to be executed. This command is useful for
single-stepping through critical sections of the emulation to
trace individual transitions. Continuous operation is resumed
with "G".

Ga CGJ_: This command causes the emulation to resume running
at current speed, displaying all currently entered variables. No
prompt is given to the user.

Page 59

Leg a Sna pshot (L) : This command creates a file which
contains the current contents of common memory/ in response to

its request

"Enter snap shot file name:"

The user specifies a valid VMS filename, such as

STATUS . LOG

and this snapshot file is deposited in the current working
directory

.

The snapshot log file may be later displayed on the user's
terminal with the SIMLIST command (Section 4.6). It contains a
record of the emulated time, the VMS system time, and a list of
the names and values of all variables in common memory at that
time. The emulation continues automatically following a
snapshot, as with the E, C, or G commands.

Quit (Q) : This command causes a graceful exit of the
display program, and a return to the V IIS monitor. However, the
operation of the emulation and data logging is actually
continued. The acknov/ledgement of this command is

"Exiting"

In order to terminate the emulation, for this example of K

processes, the user executes the commands

KILL PROC1

KILL *PROCK

which gracefully terminates each of the emulation processes.
*

After each command, an exithandler acknowledges

"Exiting"

See Programmer's Manual (SIMLEAV E)

.

*

Page 60

*

when it closes the logging file for that process. As the

process exits, the exit handler appends VMS process statistics

such as elapsed tine, CPU time, buffered and direct I/O and page

faults, in addition to the total number of common memory reads

and writes that the process made in the course of the emulation.

Then it deposits the logging file in the current working

directory. The above sequence of commands would create logging

files

PROCl.LOG iversion
0 9 9

FROCK • LOG iversion

These may be analyzed following the emulation as described in the

next step. At the exit of the last emulation process, VMS

reclaims the storage which was allocated to common memory

„

*

The "Exiting” acknowledgment may not appear on the terminal
screen directly after a KILL command has been issued. If this
should happen, continue depressing the <RETURN> key successively
until the proper "Exiting" acknowledgment occurs.

Page 61

4.5 Log File Output And Summary Statistics

Following an emulation, the current working directory will

contain log files for each process and for each snapshot that was

recorded during the emulation. Any log file (e.g., PROCESS.LOG

or STATUS . LOG) may be listed on the user's terminal by a command

SIMLIST PROCESS

or

SIMLIST STATUS

Each record in the log file begins with a single character

identifier which specifies the type of information that the

record contains. SIMLIST will retrieve each individual record

from the logging file and reformat it into a more intelligle

form. The first two lines of a process log file contain the

process name (IMAGE_NATIE) and the tick_spacing of the emulation.

User-defined type declarations usually appear next in the

appropriate Praxis syntax. To accomodate the construct of

structure type declarations, multiple records are used to store

the various components, thereby, without modifying the

structure's form. Variable transition records are listed next

with a three column format:

emulated time name value

In this section, only changes of variables are logged, hence the

"time" column only contains times when values of variables have

Page 62

changed: this information is sufficient to reconstruct a

complete picture of all common memory values associated with the

process at any time. In the case of a snap shot? the "time"

column of a snapshot file contains the last time that each

variable in. common memory was changed prior to the snapshot? the

"value" column contains the value at the time tLe

sna pshot was taken (which is the same as the value following the

most recent change, of course). A summary of the process

statistics is listed at the end of the logging file. The

procedure for creating a listing file that can be printed is

similar to that for the DICT command (Section 4.3), e.g.,
**

define/user FOR006 PROCESS. LIS.

Summary statistics for a file PROCESS.LOG are generated by

the command

SUMMARY PROCESS

which produces a listing on the user's terminal which initially

contains a list of all user-defined types declared in a process.

The next section holds, for each distinct variable in the log

*

From the description of logging files, the user may receive
the impression that there is a distinct separation of type and
variable records in a logging file. However, programs which are
called in the course of an emulation may also declare types and
thereby, insert a seemingly misplaced type definition amidst
variable transition records in a logging file. However, this
will have no effect on the SIMLIST program for it reads through
the logging file twice and separates types and variables before
listing them.

**

FORC06 is the system logical name for SYS50UTPUT.

Page 63

file, its final value, number of transitions, the set of values

it assumed (maximum and minimum values, for real and integer

variables), and the percentage of total emulated time spent in

each value (omitted for real or integer variable). The procedure

for creating listing file that can be printed is the same as for

the DICT command (Section 4.3).

Several process log files may be merged prior to issuing the

SIHLIST or SUMMARY commands. If PROCl.LOG, ... , PROCK.LOG are

the LOG files of R processes, then the command

SMERGE PROC1, PR0C2

will create the file MERGED. LOG representing two processes. The

listing produced by SIMLIST will indicate by "IMAGENAME" when

each process was begun (by the BEGIN command) and by a set of

process statistics when it was KILLed. The entry and exit of the

display module have no effect on the listing file.

5.0 SAMPLE DIALOG

This section contains a very simple two-module example to

illustrate the complete sequence of commands for running the

emulation. Module COUNTl.FSM resets to -10 and thereafter

increments (like a simulated integrator counter) on each tick

until it is reset again. Since the variable "count" does not

represent an actual state of the state machine, but rather an

internal or intermediate state, count was declared to be a

"state" variable. Module C0UNT2.FSM observes the state of COUliTl

Page 64

through common memory and issues a "RESET" command to COUNT1 when

its count reaches +10 (like a reset controller). These are to be

combined in a single enulation/simulation process U?DOW IT; this

will only work correctly if the two modules successively

communicate .via commom memory. The source codes for COUHT1 and

COUNT2 are:

//name countl
//input command string
//output count integer
//conditions command = "up"
//actions count i- count +1
//conditions command * "RESET" ...
//actions COUNT : = -10
//multimatch nexts "MULTI"
//nomatch nexts s s "NOMATCH"
//postprocess CM_V7AKE_.FSri(n_fsm„name, h_fsm_,name)
//procedures

//name count2
//output command string
//input count integer
//conditions curs "<NUL>"
//actions nexts := "RUNNING"
//conditions curs - "RUNNING ";count<10
//actions command : = "up"
//conditions curs = "RUNNING" ? count>=10
//actions command :* "RESET"
//postprocess CM_WAKE_FSM (n„fsm_name , h„fsm_name)

FIG. 4. MODULES COUNT1 AND COUNT

2

Note that COUNT1 is unusual because its current state is never

read from memory and because it does not initialize the value of

the "count" variable? command values are both upper and lower

case. While neither module requires procedures, COUNT1 contains

a "//procedures" statement while COUNT2 does not.

Page 65

module C0UMT1
export C0UMT1
use mathlib. textio, vax. run.time, shared..memory, shareout. vaxdef
function C0UNT1 () returns compute_delay : integer initially B

declare

//. SYMBOLIC NAMES FOR TYPES
INTEGER.l is 8 bit integer
INTEGER.2 is 16 bit integer
INTEGER. 4 is 32 bit integer
REAL. 4 is real
REAL. 8 is long. real
LOGICAL. 1 is 8 bit logical
L0GICAL.2 is 16 bit logical
LOG I CAL. 4 is 32 bit logical

// HANDLES FOR PREDEFINED TYPES
h.CHAR - 1
h.INTEGER.l - 2
h..INTEG£R_2 - 3

h_ INTEGER. 4 - 4

h_R£AL_4 - 5

h. REAL. 8 - 6
h. LOG ICAL. 1 7
h_ LOG I CAL. 2 - 8

h_ LOG ICAL. 4 - 9

h.BOOLEAN • 10
h_INTEGER > 11
h.REAL > 12
h. LOGICAL - 13
h.LOMG REAL >14

. // USER-DEFINED TYPES
PCHAR is CHAR initially $<NUL>
STRING is packed array [1.. 32] of PCHAR

// NAMES FOR USER-DEFINED TYPES
n. PCHAR : static string initially “PCHAR*
n. STRING : static string initially “STRING*

// HANDLES FOR USER-DEFINED TYPES
h. PCHAR : static integer

1 h.STRINS : static integer

I // INPUT VARIABLES '

COMMAND : Static STRING
n. COMMAND : static string initially “COMMAND*
h_COMMAND : static integer

// OUTPUT VARIABLES
COUNT : static INTEGER
n. COUNT s static string initially "COUNT*
h_COUNT : static integer

// INTERNAL VARIABLES
n_ fsm.name : static string initially “COUKT1*
h.fsm.name : static integer initially 0

curs : static string
n.curs : static string initially “COUNTl.CURS*
h.curs : static integer
nexts : static string
first. entry : static boolean initially true

time : static integer
output. delay

,
pairnumber, pairselect : integer initially 0

enddeclare

// GET HANDLES ON ALL TYPES AND IN/OUT VARIABLES
if first.entry do

h. PCHAR :> CM.OPEN. ALIAS.TYPE (n. PCHAR. h.CHAR)
h STRING :« CM.OPEN. ARRAY. TYPE (n. STRING. h_ PCHAR 32, true)
h curs :> CM. OPEN.VARIABLE (n. curs, h. string, n fsm.name, h.fsm name SI)
h COMMAND : CM. OPEN. VARIABLE (n. COMMAND, h. STRING.
n. fsm.name, h.fsm.name, $1)
h. COUNT :* CM.OPEN.VARIABLE (n. COUfTT. h_ INTEGER,
n. fsm name, h.fsm.name, SO)

end if

Pace 66

COriilAITD : STRING
Written by : C0UNT2

Read by : C0UNT1
comments:

COUNT : INTEGER
Written by : COUNT

1

Read by : COUNT2
comments

:

FIG. 6. PARTIAL DICTIONARY LISTING FOR COUNT1 AND COUNT

2

The command

PARSE C0UNT1

produces the file COUNTl.PRX shown in Figure 5. The details of

this code are unimportant here, except to note that the comment

"do the counting" from the condition/action section of COUNTl.FSM

has been correctly carried through to the PRAXIS code to

faciliate debugging.

Page 67

The command

PRAXIS COUI’TTl

then produces the files

COUNTl. OBJ
COUNTl. SPS

The same procedure is repeated for COUNT2.FSI1.

These two modules could be built either into separate

processes or into a single process; the latter option was

selected. The command

DICT COUNTl , COUNT2

produces the record in Figure 6 at the user's terminal. This

indicates that the variable "count" of type "integer" is passed

for COUNTl to C0UNT2 and that the variable "command" of type

"string" is passed from COUNT2 to COUNTl. Since this does not

indicate any errors, proceed with the command

BUILD UPDOWN COUNTl , COUNT2

which produces files

UPDCWN.PRX
UPDOWN. OPT

in the current working directory. No scheduling delays were used

in this -example. For completeness, the file UPDOWN. PRX is shown

in Figure 7. The statements

main module UPDOWN
use shareout, shared_memory
use COUNT2
use C0UITT1
declare

COUHT2_count : integer initially 0

COUMT2„delay = 0

COUHTl.count : integer initially 0

COUNTl„del ay - 0

enddeclare
repeat

if COUNT2_count = 0 do
COUKT2_count s = MAX (COUNT2 () . COUNT2„ del ay

)

otherwise COUtTT2_count *- -1? endif
if COUMTl_count = 0 do

COUKTl.count : = MAX (COUNTl (), COUNTl„ delay)
otherwise COUl!Tl_count *= -1? endif

CM_ DUMP„OUTPUTS (

)

until false
endmodul.e {X}

FIG. 7 UPDCX7N.PRX

Page 69

use COUNT

2

use COUNT1

in this file call on the Praxis compiler to use the nodules

COUNT1.SPS, COUNT2.SPS produced in the previous step. To compile

and link this combined process, the user types

PRAXIS UPDCWN
LINK UPDCWN/OPT

which produces the file UPDCWN.EXE. Now to run the emulation,

one types

BEGIN UPDCWN
DISPLAY

and the display question

"Hit any key to start display"

appears on the screen, along with the emulated time, as explained

in Section 4.5. Begin with any key other than E or D. After the

process has begun, enter

E

the user is asked

Page 7 C

"Variable name?"

And since this is a small example, the response

*

will show all the variables in common memory. This includes

COUNTl_CURS: (value)
C0UNT2_CURS: (value)
count: (value)
command: (value)

The value of C0UNT1_CURS remains "NOMATCH " ; C0UNT2_CURS remains

"RUNNING " . The value of count is seen to increment rapidly from

0 to 11, and thereafter it is periodically reset to -10 whenever

it has counted up to 11. The value of the variable command

remains as "up", and as the count reaches 11, it goes to "RESET".

Instantaneously after the count goes to -10, command is reset to

"up"

.

One might wish to record a snapshot by typing

L

and supplying a file name SNAP. LOG in response to the query •

"Enter snap shot file name"

or to go into single-step mode with

S

in order to collect a set of snapshots at successive times to

Page 71

examine' why the variable count achieves the (perhaps unexpected)

value of eleven.

Curiousity exhausted, the user may wish to type

Q

and end the emulation. This elicits the acknowledgement

"Exiting"

as DISPLAY passes away. But the emulation actually continues

until the user types

KILL UPDOWN

upon which the system replies

"Exiting"

and returns the VMS prompt ($). Recall that the "Exiting" reply

may not appear on the terminal screen immediately after the KILL

command is issued. If this should happen, simply press the

<RETURN> key several times and the proper "Exiting" response will

surface.

To see the snapshot and logging file, one types

SIMLIST SNAP

and/or

SIMLIST UPDOWN

Page 72

The relatively long listing produced by the second command can be

suspended and continued with CTRL/S and CTRL/Q at the user's

terminal. The first and last page of this listing is shown in

Figure 8.

From this, the following observations may be quickly noted?

(1) On the first cycle COUNTl_CURS goes to "NOHATCH" because

the initial value of command is "<NUL>". Thus, on the first

cycle, none of the conditions was true and module COUNTl goes to

the next state "NOMATCH" as specified. No subsequent actions

change the-State from this value. Module COUNT2 self-initial iz es

to state "RUNNING "

.

User-defined types in order of declaration
PCHAR is CHAR
STRUNG is packed array [1.. 32] of PCHAR

Tick Spacing: 0.10C0C0-

C: C: 0. 00 COUNTl_ CURS
C: C: 0.0C count2_ CURS
C:f: 0.10 COMMAND> up
0: C: C. 20 COUNT 1

0: C: C . 30 COUNT 2

C: 0: 0. 40 COUNT 3

0:0:0. 5C COUNT 4

0:0: 0. 60 COUNT 5

C: C: C. 7 0 COUNT 6

C:C:C.80 COUNT 7

C:C:C. 90 COUNT 8

0:0: 1.00 COUNT 9

C: 0: 1 . 10 COUNT 10
Cs Gs 1.20 COUNT 11
0:0:1. 20 COMMAND REJ

0:0:1.30 COUNT -10
0:0:1.40 COMMAND up
0:0: 1.50 COUNT -9
0:0:1.60 COUNT -8
0:0:1.70 COUNT -7
0:0:1.80 COUNT -6
0:0: 1.9 0 COUNT -5

0:0:2.00 COUNT -4

0:0:2.10 COUNT -3

0:0:2.20 COUNT -2
0:0:2.30 COUNT -1
0:0:2.40 COUNT 0

0:0:2.50 COUNT 1

0:0:2.60 COUNT 2

0:0:2.70 COUNT 3

0:0:2.80 COUNT 4

0:0:2.90 COUNT 5

0:0:3.00 COUNT 6

0:0:3.10 COUNT 7
0:0:3.20 COUNT 8

0:0:3.30 COUNT 9

0:0:3.40 COUNT 10
0:0:3.50 COUNT 11
0:0:3.50 COMMAND RE:

0:0:3.60 COUNT -10
0:0:3.70 COMMAND up

STATISTICS
Terminated -a-t: 0:0:26.30
Total common memory reads 1052
Total common memory writes 1052
Elapsed Time 00:00:21.83
CPU Time (10 msec units) 375
Buffered I/O 3

Direct I/O 2

Page faults 15

C

Page 74

(2) At 1.2 seconds, C0UTT2 has detected that count is 10 and

changed the command to "RESET", but on the same cycle COUNT1 has

deposited 11 in common memory. On the following cycle, count is

reset to -10 in module COUtITl, as desired, but module COUNT2

still reads the previous value, count-11, so that its output is

unchanged. At 1.3 seconds, module COUITTl resets again to ”10,

since this is no change from its previous value, this unintended

situation is not recorded in the log file. But at this same

time, CO

U

ITT2 detects the reset value of count, and switches its

command to "up".

(3) Counting proceeds as intended, until the situation of

the previous step is repeated.

(4) At the end of the log file, the total number of emulated

common memory "read" and "write" operations is tabulated (these

are almost equal, since each module reads and writes a single

variable in common memory). The last 8 lines of the log file are

VIIS statistics which allow the user to gauge the computational

requirements of the emulation itself. The fact that the elapsed

time (7.3 sec) was close to the emulated final time (7.2 sec*) is

a coincidence; the example was run on a very heavily-loaded

system. The actual CPU time consumed by the emulation was

approximately 115 x 10 msec. or 1.15 seconds; thus on a

single-user basis, this example could run at approximately 10

times emulated speed. A large number of page faults in the log

file is an indication that the emulation itself is quite large,

Page 75

and/or that more system resources should be allocated to the

emul at ion

.

Finally, the command

SUMMARY UPDCWN

will produce the summary statistics shown in Figure 9.

IMAGE NAME: DRAl: [MHS.BUFFER21UPDCWN.EXE: 36

Terminated at: 0 : 0 : 7.30
Total common memory reads 362
Total common memory writes 284
Elapsed Time 00: 00: 02.54 *

CPU Time (10 msec units) 115
Buffered I/O 3

Direct I/O 0

Page faults 134

SUMMARY OP VARIABLE STATISTICS
NOTE: VALUES GIVEN ARE LAST VALUES
WARNING : TRANSITIONS MAY BE AFPECTED BY INITIAL VALUES

COUNTl.CURS NOMATCH (TRANSITIONS: 1)

Total transitions for that variable: 1

COUNT2_CURS RUNNING (TRANSITIONS: 1)

Total transitions for that variable: 1

COMMAND up (TRANSITIONS: 7)

List of values
Duration % Value
0 : 0: 0.60 8 RESET
0 : 0:6.60 90 up

Total transitions for that variable: 7

COUNT 2 (MIN: -10 MAX: 11 TRANSITIONS: 68)

Total transitions for that variable: 68

Total number of variable transitions: 77

This shows, among other facts, that there were 68 changes in the

integer variable "count", which ranged from -10 to 11, and that

the variable "COMMAND" spent about 8_ of the emulated time at the

value "RESET".

This example demonstrates approximately correct behavior,

even though the synchronization between modules is not exactly

what the reader may initially have expected. This illustrates

Page 76

that even though each nodule is scheduled on every tick, and even

though common memory is functioning precisely as described, the

communications between modules cannot be assumed to be automatic.

In more complex cases, several cycles of "handshaking" may be

required in' order to achieve an intended interaction.

The reader is invited to attempt to modify this example so

that "count" does not reach the value 11 and does not repeat the

value -10 twice, and so that the state of module COU1IT1

self-initial izes correctly. As a further test, the effects of

building other versions of UPDOWN with various independently

specified scheduling intervals for COUNT1 and COUNT2 should be

observed. This type of requirement is more typical of

general-purpose asynchronous emulations.

Page 77

6.0 ERROR MESSAGES AMD DEBUGGING

A step-by-step process for writing and running an emulation

has been described in Section 4. Possible sources of error were

indicated in several of the steps. As a rule, all errors

discovered at a given step should be corrected (usually by

modifying FSH module source code and repeating the prior steps)

before proceeding with subsequent steps in the process. Usually,

error messages generated by the emulation modules can be

corrected directly by reference to the source files. A complete

set of error messages produced by the emulation code is provided

in the Programmer's Manual. The emulation itself provides two of

the most valuable debugging tools: the DICT and SIMLIST

commands. As indicated in Section 4, DICT allows the user to

rapidly check that modules are consistent in their naming

conventions and that minor typographical errors have not occurred

in variable names. These errors may otherwise go undetected:

the emulation will run, but the correct connection will not be

made through common memory. The logging file produced by SIMLIST

is an excellent aid in determining logical errors in

communicating between modules, as illustrated by the example of

Section 5. Generally, receipt of a command should be

acknowledged, which should result in the command and

acknowledgement being reset. This logic must occur within the

modules if communication is to be robust in the presence cf

scheduling.^ delays. The logging file produced by SIMLIST is the

only diagnostic which contains the actual values assumed by

Page 78

variables, as these are not readily determined until run-time.

Often an error can be detected by reference to the summary

listing, which may reveal that a variable did not take on one of

its expected values during a run, or did rapidly transition in

and out of an unexpected value-

In addition to error messages produced by the emulation

code, other error messages can be produced by the Praxis

compiler, the linker, and the VMS operating system. The user

should ascertain which program has given rise to an error message

from the syntax of the message. If the VHS message "Unrecognized

command" is issued on response to the PARSE command, the user

should re-execute the foreign command file by typing

@HCSE_LIBRARY ; FOREIG N

This is always necessary when the user logs in and should be in

the user's login command file. If the executable images of the

operational software programs in the HCSE_LIBRARY are missing or

lost, the entire set can be regenerated provided that the various

object and linker options files are still in existence.

VIIS and the HCSE always select the most current version

number of a file for processing, and also automatically seeks the

proper file type. If all steps of a revision are not completed,

0

then the (erroneous) previous file version will be used if a

later step is attempted? usually this results in a fatal error.

In addition, it is recommended that the user adopt the suggested

file type specifications of this manual in order to avoid

Page 79

retrieving an incorrect file.

Error messages generated by the Praxis compiler are listed

in the Praxis Language Reference Manual. These are most likely

to originate from the "//procedures" segment of an FSM source

file. Another possible source of compiler errors nay arise if

the user makes changes directly to the Praxis source code

produced by the FSM parser. Occasionally, review of this code

may be useful during debugging, but it is recommended that

corrections be entered through the FSM source file rather than in

the PRX file produced by the parser.

Page 80

7.0 PERFORMANCE CAPABILITIES AMD L II* ITAT10MS

The purpose of this section is to assist the prospective

user in evaluating the HCSE concept in comparison to more

traditional simulation methods, and to provide indication of some

specific techniques which have been developed in the HCSE

Appl ications Guide .

7.1 Limitations

The HCSE is machine-dependent and is not readily

transportable to machines other than the Digital Equipment

Corporation VAX with the VMS operating system. It is also based

on the Praxis language, which is not yet in widespread use.

Uhile the HCSE concept as described herein can be implemented on

other machines, using other programming languages, its

performance capabilities and limitations would depend

significantly on the features of the particular machine and

language chosen. Clearly, a moderately large machine, with

substantial disk storage, and a relatively powerful language

which allows procedures to be separately compiled, ace

prerequisites in obtaining adequate performance.

Since Praxis is a compiled language, all modules of the

emulation must be compiled prior to running the emulation. Thus,

the procedural code, operators, and local variables may not be

changed at run-time. In some respects, this is less convenient

than an interpretive language (such as FORTH or LISP) would be.

Page 81

The feasibility and relative efficiency of implementing the HCSE

concept in an interpretive language is not clear at this time.

The HCSE runs on a single serial processor , and this places

a distinct limitation on the size and/or speed of emulation which

can be run at real time speeds. VMS updates process event flags

every 10 msec., and this places an upper limit on execution

speed. While there is nothing in the concept of a modular

sensory-interactive hierarchical control system that would

prevent multiprocessor implementation, the practical

implementation of shared memory becomes increasingly difficult as

the number of concurrent processes and processors becomes large.

The HCSE may require more expertise and careful preparation

by the user than conventional simulation. Conventional

simulation would represent the input-output relations of modules,

but not the structure of internal software of the actual system

or its run-time properties.

The use of a shared memory for interprocess communication,

and the state-machine format of the modules give rise to certain

rather subtle limitations of the HCSE. For instance, it is the

total number of variables read and written on each cycle which

most affects the run-time efficiency of the emulation. The

state-machine structure of the module is always a limitation
U

compared to the possibility of simply writing a program module in

Praxis — in an asynchronous application where the relative

reading and writing rates of different modules vary, the length

Page 82

of the necessary send/acknowledge sequences can become quite

long, especially when several modules must be synchronised or

when resource allocation is required. Operations such as

counting or queuing, which are not computable by finite-state

machines, must be embedded in local procedures.

7.2 Performance Capabilities

In the realm of control system design, the use of an

interactive real-time emulation/simulation is new, and the HCSE

represents one of the first systems of its kind. By contrast to

conventional batch-process simulation tools, the HCSE has

significant advantages for industrial applications.

In many ways, the emulation of timing is easier than

simulation of timing, because complex temporal interactions among

computational processes are difficult to describe in simulation

programs. Of course, the common memory synchronization employed

in the HCSE is not as general or as complex as scheduling

processes employed in computer operating systems and

communication networks, but it is still very complex.

The possibility to actually experience, stop, examine, and

even modify the course of an emulation greatly facilitates

debugging of a control system, and the thoroughness of the

debugging is greatly enhanced in an emulation as compared to a

simulation.

Page C3

As indicated in the introduction, emulation permits a

quantitative evaluation of the adequacy of computational

resources and alternative allocations of multiprocessing

resources, which would otherwise be very difficult to determine.

The capability to vary the rate of the emulation is

extremely useful for purposes of interactive display. Note that

graphics display (although not described in this manual) can be

run concurrently with the monitor display as separate processes.

The rate of emulation can be varied from single-step to slow or

fast wall-clock synchronization, to the maximum rate compatible

with the current utilization of machine resources. The emulation

runs in a time-sharing environment.

Perhaps the most powerful feature of the emulation is the

capability to run at exactly real-time speed and to interface

with actual subsystem components. By first doing a purely

software emulation/simulation and then gradually replacing

simulation modules by actual pieces of equipment, the complete

control system can be "brought up" on a piece-by-piece basis. At

this point, the emulated software can (again, possibly on a

subsystem basis) be replaced by the dedicated target software.

The potential economic benefits of this procedure are very

substantial: reducing plant startup time and permitting

subsystem operation prior to the arrival of all plant equipment.

During start-up, the full cost of capital must normally be paid

while there is no production; in a high-interest rate economy,

reducing startup time can lead to substantial savings. A related

Page 84

use of the HCSE is to provide back-up during failures of control

system components without the expense of redundant computer

capacity that is often conventionally employed to provide

duplicate back-up capability. Although the HCSE would not

normally have the speed of a dedicated control system, it could

provide a reduced level of function in emergency situations.

The easiest way to run the emulation with a synchronous

external device is to set the speed ratio to 1.0 on the display

and to use a clock output derived from the VAX internal time

standard to clock the external device. Since the clock time at

which the emulation is begun is typically not known in advance,

an operation which is to begin at a certain time-of-day should be

synchronized by use of VMS system services. If a synchronous

external device does not permit an external clock signal, an

independent process may be written to synchronize the emulation

with the external clock of the device.

With minor modifications, the HCSE can also be run in batch

mode using the VSM SUBMIT command. In this way, the user may run

Monte Carlo tests to estimate error statistics such as mean times

between failures.

Additional capabilities are described in the HCSE

Applleati^ns Guide

.

I;

Page 85

l.C APPENDICES

1.1 Specific Hardware And Software Requirements

Cozcuter: Digital Equipment - VAX 11-780

Storage: Minimum one and preferably three disk drives

Terminals: DEC-supported terminals or fully
compatible equivalent (VT-52) or (VT-100) .

FSM source files may be developed on non DEC-
supported terminals.

Hardrcopy Devices! No specific requirements. Fortran unit 6 is

used by SUMMARY for output. SYSSOUTPUT is
used by other display programs; this may be
redirected to a hard-copy device at the
user's discretion (see Section 4.4).

Software: VMS Version 2.7
VMS utilities and libraries are required.

The following files are required:

Command F ile s (defined under system logical name
HCSE.LIBRARY)

FOREIGN.COM BEGIN.COM SMERGE.COM

Libraries (defined under system logical names
PRX$SYH0?S IS. 0 through
PRX$SYHOPSIS. 4)

PRAXIS.LI3RARY BP_LIBRARY (references FORTRAN library)
CM_LIBRARY , which includes

VAXDEF .OBJ
VAXDEF.SPS
SHRHEM .OBJ
SHAP.EOUT . OBJ
SHAREOUT.SPS
SKAREDMEM. SPS
VAXP.UNTIM.SPS

Executable images (under system logical name i

21 ; HCSE_LIBRARY

)

PARSER. EXE DICTION . EXE BUILDER . EXE DISPLAY . EXE FOP.CEX.EXE
SIMLIST.EXE SUMMARY .EXE

Page 86

1.2 Creating State Machine nodules From State Machine

Descriptions

Using the example of Section 5 , this appendix illustrates

procedures for converting various state machine descriptions into

the FSK file format. The most common means for describing finite

state machines with a small number of states is the state

tiaasitibQ diagram.. The machine characterizing the emulation of

Section 5 is shown in Figure 10.

The contents of the balloons are the value of the state. On the

arrows are the values of the input (s), followed by the values (or

changes in) the output values. The name of the input, output,

and state variables are usually implicit in this representation.

The integer variable "count" is not finite-valued and the

standard notation does not apply, in a strict sense, to this

example. However, the values of "count" are intended to be

finite in this example. With this foreknowledge, "count" could

then be regarded either as a second state variable or as both an

input and output variable. The latter point of view is taken in

this example. Mote that in machine C0UNT2 there is an

unconditional state transition from <NUL> to HUMMING without ah

output change.

A state-machine can always be represented in terms of a next

state and output function, defined on the set of all possible

values of current state and input. For the present example,

these are "specified by Table 2.

Since the current value of "count" does not influence the next

Page 87

UP/count* 3 +1

aNUL>/count)

UP/count* 3 +1

<>UP,oRESET/
count 3 count

INPUT VARIABLE: command
COUNT 1

<NUL>/command ^

<10/UP I >10/RESET

“N
^ RUNNING/command ^

COUNT 2

"
,NPUT VARIABLE: count

PIG. /a. STATE MACHINE DIAGRAM FOR EXAMPLE

Page 88

TABLE 2. (A) ENUMERATED NEXT STATE AND OUTPUT FUNCTIONS FOR
COUNT1

couNT 1

CURRENT NEXT NEXT
STATE INPUT STATE OUPUT

«NUL> UP <NUL> E 3+1
RESET <NUL> -10
OTHER NOMATCH t 3

MULTI UP MULTI E 3+1
RESET MULTI -10

• OTHER NOMATCII E 3

NOMATCH UP NOMATCH E 3+1
RESET NOMATCH -10
OTHER NOMATCH E 3

TABLE 2 . (B) ENUMERATED NEXT STATE AND OUTPUT FUNCTIONS FOR
COUNT2 NOTE? f J DENOTES CURRENT OUTPUT)

COUNT 2

CURRENT
STATE INPUT

NEXT
STATE

NEXT
OUTPUT

<NUL>
RUNNING

any integer
< 10
> 10

RUNNING
RUNNING
RUNNING

E 3

UP
RESET

Pace 89

state of C0UNT1, it has not been shown in a separate column; its

value is used implicitly in the last column. ITote that neither

"count" nor "command" variables are initialized, making this

formally a non-deterministic machine. The state table is merely

a definition of the next state and output functions by

denumeration. Sometimes, current state/input conditions which

leave the current state and next output unchanged are eliminated

from the table; the last row of the table for C0UHT1 is the only

case where this occurs.

The relationship of the relay ladder diagram and state

machine representation is somewhat difficult to describe. In the

case where all quantities are binary, each "rung" of a relay

ladder implements a binary-value function of the current state

and input. In the case where states, inputs and/or outputs are

string-valued, it is necessary to code the values of the state,

input, and output as binary numbers and then represent the next-

state and output functions bit-by-bit. Other elements of relay

ladder networks include counters (typically with toggle inputs),

preset timers, and switches. The essence (but not the details)

of the preceding example can be represented by the diagram of

Figure 11.

At the lef-t is a bus with binary 1 (or "true"). The coil (open

circle) at the right provides the value of the variable denoted

Page 92

FIG. ±t, RELAY LADDER DIAGRAM FOR EXAMPLE

"RESET 1
® (this would typically be assigned a coil number in

practice). The partitioned rectangle represents a preset timer

with preset value 20 [-10- (-10)] from the example). "T"

represents the register in which the elapsed time since last

reset is stored? this is comparable to (count+10) in the example

because by convention, the preset timer resets to zero. The

upper left line is the control line? the clock counts whenever

it is "true*. The lower line is the reset line, which resets the

timer to zero whenever its value is true. The intended effect of

this rung is that the preset timer counts to 20 and then resets

itself, since the normally open relay on the reset line

represents the same coil designated "RESET" on the right. This

formal configuration may not be legal in the notation used by

some manufacturers, but it illustrates the nature and intent of

the example. Module COUUTl is represented, conceptually, by the

timer while module COUMT2 is represented by the coil.

Page 91

The FSK modules COUIIT1 and COUNT2 corresponding to the

example are shown in Figure 5. By examination of Table 2(a), the

next state is seen to be actually independent of the current

state, so that the "conditions" lines do not involve the current

state in C0UNT1. In module C0UNT2, there is one "conditions"

line for each line of the state table. The "actions" line

computes the next state and output. The "multimatch" and

"nomatch" lines are action lines for defining the next state and

output under conditions that violate the normal rules of state

machine representation/ viz., that all input combinations be

considered in the state table (so that the next state and output

maps are functions rather than partial functions), and that the

values of the next state and output functions (by definition) be

singly-defined.

1.3 Praxis Primer

UCRL-52957 Rev. 1

An introduction to Praxis

James R. Greenwood

Arthur Evans, Jr.

C. Robert Morgan

Michael C. Zarnstorff

December 1980

An introduction to Praxis

ABSTRACT

Praxis is the practice of the programming art, science, and skill. It is

a high-order language designed for the efficient programming of control and

systems applications. It is a comprehensive, strongly typed, block-structured

language in the tradition of Pascal, with much of the power of the Mesa and

Ada languages. It supports the development of systems composed of

separately compiled modules, user-defined data types, exception handling,

detailed control mechanisms, and encapsulated data and routines. Direct

access to machine facilities, efficient bit manipulation, and interlocked critical

regions are provided within Praxis.

Keywords: Praxis, high-level control language, compilers, real time.

Section 1

INTRODUCTION

This report describes the control-system implementation language Praxis, which

has been developed in the Laser Fusion Program at the Lawrence Livermore National

Laboratory (LLNL) for control applications. It serves as an introduction to the language so

that the reader can get a feel for what the language is and find out if it is applicable to the

reader's needs.

Most of the report consists of graduated examples that provide an overview of the

language. The definition and details of the language can be found in the Praxis: Language

Reference Manual and in other companion reports that follow the publication of this report.

Section 2

DEVELOPMENT HISTORY

In the summer of 1978, it became apparent in the laser fusion program at LLNL
that we needed a control-oriented language for use in programming the control system of the

Nova laser system. Our experience in developing the laser control system for Shiva, con-

sisting of 55 processors, clearly indicated that if a controls-oriented programming language

were available we could save considerable time and effort with respect to Nova.

After carefully evaluating potential languages, including DOD's current develop-

ment of Ada, we chose to implement Praxis. Although Ada would meet our needs, it would

not be available in time for Nova (compilers had to be available before the mid-1980 s to

meet the needs of the Nova controls programming). In retrospect, our selection ot P'ums

proved correct, since a Praxis compiler now exists and is in use while the more ambitious Adj
development is still ongoing.

93

The development of Praxis originated from an initial study by Bolt. Beranek. and

Newman (BBN). Inc., funded by the Defense Communications Agency (DCA), to determine

the requirements of a language for communications programming. The result of that study

(BBN Report 3261) concluded that no current language fulfilled the rigorous needs of com-

munications programming.

The DCA then funded BBN to design an appropriate programming language. This

resulted in a preliminary design of the COL language described in BBN Report 3334, May
1977 (A. Evans, C. R. Morgan). Also, the DCA funded BBN to design a compiler described

in BBN Report 3533, May 1977.

In January 1979 LLNL funded BBN to augment the design of COL and to imple-

ment a COL compiler for the PDP-1 1 series of computers from Digital Equipment Corpora-

tion. With the clarification of the Nova controls design and schedule, BBN’s work has been

expanded to include the development of a VAX/VMS native-mode compiler, documenta-

tion, additional language design, and a high-level input/output package. BBN is scheduled to

complete their work by fall 1980, with the delivery of documented operational compilers for

Praxis, on both the PDP-1 1/RSX-ll and VAX/VMS systems, written in Praxis.

In January 1980 we changed the name of the language from COL to the current

Praxis. We felt that the language had evolved significantly from that of the original COL
study and that a new name would better reflect its power.

In March 1980 the preliminary PDP-11 compiler successfully passed two critical

milestones. The first milestone was that the compiler, which is written in Praxis, had to com-

pile itself successfully on the PDP-1 1/RSX-1 1M system. This would demonstrate that the

compiler was self-supporting on the PDP-11 systems, and that the bulk of compiler was

correctly implemented.

The second milestone was the implementation of a Nova controls application of the

language, for a ROM-based LSI- II processor. A 2000-line assembly-language, stepper-

motor control program had to be recoded in Praxis, compiled, and burnt into read-only

memory (ROM). This would demonstrate that the language was indeed powerful enough to

replace detailed, assembly language sequences and that the compiler correctly implemented

the controls-oriented features.

Section 3

INTENDED APPLICATIONS

Praxis is designed for programming control and communication applications. It is

also useful for system programming applications, which require many of the same language

facilities found in Praxis. All these applications impose stringent requirements on program-

ming in such areas as

• Efficiency of object code.

• Direct access to machine facilities.

• Efficient bit manipulation.

• Complex data and control structures.

• Large programs developed by a team.

• Maintenance and upgrades.

The programming of these applications requires detailed control of the compiler-produced

code, the optimization, the variable allocation, and the run-time support. In these applica-

tions. it is important for the programmers to explicitly control exactly what is going on

94

Section 4

DESIGN GOALS

The design goals of Praxis are based on the requirement of the language being t

useful ,ool for programming control applications. Consequently, the goals may be stated as

• Efficiency: first of the compiled code, then of the compiler.

• Readability: particularly more important than writability.

• Completeness; in the sense that _
• it must be possible to program all of any one application in Praxis without

recourse to assembly language.

• it must be possible to write the compiler for Praxis in the Praxis language.

• Portability: Praxis should be reasonably machine-independent.

• Modularity: it must be possible to program large projects within Praxis, requir*

ing separate compilation of modules and configuration control.

• Usability: primarily used by experienced programmers, so that the ease of

learning Praxis is less important than the ease of using Praxis.

The primary requirements for control applications are efficiency of the compiled

code, completeness, and portability. Praxis must produce programs that make effe
f
llv*

of hardware resources directly controlled by the programmer. Also, the programs should be

as portable as possible between machines. In general, the language features are portable but.

where machine-dependent parts are necessary, they are as conspicuous as possible. For ex-

ample, the programmer can override the language's type-checking mechanism, but it is easy

to see when this is being done.
.

The requirement for efficiency has had one other impact on the language design. AU

proposed features and facilities have to be scrutinized for the run-time and the compile-time

efficiency of their implementation. No matter how desirable a particular feature might be, it

had to be rejected if a reasonably efficient implementation could not be designed.

Section 5

LANGUAGE OVERVIEW

Praxis is a modem, block-structured, fully typed, algorithmic programm.ng lan-

guage in the tradition of Pascal. Its design has been influenced by the languages Simula.

BCPL, Euclid, PL/I, Jovial, CS-4, Alphard. Mesa, and Bliss languages, as well as by the

DOD's language development work and the proposed Ada language. In scope and power.

Praxis most closely resembles Ada and Mesa.

Since the control environment differs in important ways from application to ap-

plication and machine to machine. Praxis has features to handle these differences High-level

facilities that mask machine dependencies and foster machine independence (portability!

usually prevent the use of exactly the programming capability needed Tor real-time, control

applications programming. However. Praxis is a high-level language that has controlled

access to machine dependencies.

Praxis is strongly typed. The programmer is given a collection of predefined types

and has the ability to construct new types. Every variable, constant, parameter, and expres-

sion has a type. All types can be deduced at compile-time and the compiler requires that each

value be used in a way that is consistent with the rules associated wuh its type For instance

95

it is a compile-time error to attempt to pass an integer parameter to a routine that requires a
real parameter.

The language is blocked structured. Blocks are a method of packaging statements
and declarations so that the scope of the statements is dearly specified and controlled. Praxis
has more than 10 block-structured statements, each of which is delimited by an
XXX/endXXX pair, where XXX represents the particular statement name. For instance:

f°r • • . endfor
f if endif

procedure endprocedure

endselect

The block structuring also enforces a particular programming style that is more readable and
maintainable than that of unstructured programming.

A simple example in the language is the matrix multiply of two N by N matrices
named SpecA and SpecB and storing the result in Spectrum:

for I 1 to N do

for i : I to N do

Spectrum [U] : 0
for JC :• 1 to N do

Spectrum [U] : Spectrum [U] + SpecA [I,K]* SpecB [KJ]
eadfor

eadfor

eadfor

This example only makes sense within the scope of the declarations for the variables used. All
the variables, except the one for loop indices, must be declared before use. Thus, the code
above would be preceded by something of the form

declare

^ " 32 // constant
SpocA : array [1..NJ..N] of friteger // an array variable
SpecB . array [1..N.1..N] of integer // an array variable
Spectrum : array [l..N,l..N] of integer // an array variable

eoddedare

This declaration block could be written more concisely in various forms. One method would
be to use a user-defined type for the array declarations, which then would ensure that the
three arrays are all the same type and remain so with subsequent software maintenance.
Thus, the d^larations could take the form

declare

^ " 32 // a constant
matrix is array [1..NJ..N] of integer // § type
SpecA . matrix

// array variable
SpecB : matrix

jj an array variable
Spectrum : matrix

// an array variable
eoddedare

Note that we have used the language's comment convention which designates that all
text to the right on the line is treated as a comment. Here, all language-reserved words are
boldface in the examples, but no distinction is made in actual programs.

96

Another example is a simple exchange sort in which a

ascending order:

values array is sorted into

//a constant integer

//an integer array variable

//a true/false variable

/ / nothing out of order found

// if out of order, exchange them

// not done yet

declare

N - 100

data : array [1..N] of integer

r done : boolean

roddeclare

... code to store values in data ...

repeat

done : trae

for K 2 to N do

if data IK-U > data [K] do

swap (data [K*l], data [K])

done : false

endif

endfor

Tv. rMtJTwoek-suuctured statement is the exception to the ending syntax rule, in that the

The tepe** “ H„k Th. r,~,t /«ntil has the semantics thst the included

-*» -iur code, using the same resource, eanno, preempt

the critical-region code sequence.

Declare
, .

status : location (8! 176420) voUnle logical

datum : locatioo (81176422) toiatile char

padlock : satic interlock

temporary : char

enddeclare

Region padlock do

Repeat nnril (status and 8^200) <> »#0

temporary :* datum

endregion

// sutus register

// input register

// exclusion variable

/ /
wait for device ready

// read the character

// lock the interlock

// unlock the interlock

The attribute volatile on the variables status and datum informs the compiler that the

variables rnust ^dereferenced dtrectly each time they arc pensioned ini the program. *nd no

opi.misai.ons are lo be performed on ihese variables, it allows var.ables to be used

reaisiers as above, as well as to be used in shared memory.
.

8

The location attribute informs the compiler 10 place ihe vanable in the physical ad-

dress specified by .he octal (S') in.egcr constant in th. parentheses. The variable »•«*.«.«d

always^esides at that location. The sutic interlock is at a fited location determined by

compiler.

defined^^ mJy * lhough. of as a bit-string data .ype on

which bit-by-bit operations may be performed In the un.il clause, a bit m -be vatube

is tested by the bit-by-bit end with the octal (8.1 logical constant and comparison to a logic.

zero.

97

A more complex application, which demonstrates the ability in Praxis to bypass the

strong typing (when desired), is the sequence that extracts the exponent value from a real

number on the PDP-11:
0

Declare

scale : real // floating point variable

power : integer // signed integer variable

temporary : logical // 16-bit bit-string variable

enddeclare

... code assigning value to scale ...

temporary :* ((force logical (scale)) rah 8) and 8#177

power :» Integer (temporary) - 81100 // make -N to N

The force explicitly overrides the type-checking mechanism and specifies that the variable

scale is to be handled as a logical in this expression. The logical value (i.e., 16 bits) is shifted

right 8 bits and masked with the logical constant. Temporary is assigned the resulting value

that was the exponent of the real variable scale. The logical value is then converted to an in-

teger and stored in the variable power.

Note the distinction between force and type conversion; force informs the compiler

to treat % variable is a particular type regardless of its actual type; conversion causes the

variable to be convened to the desired type.

Another application of type conversion is shown in the function upper, which con-

verts a possible lower-case letter to an upper-case letter:

function Upper (inchartchar) returns outcharchar

if inchar < Sa or inchar > Sz do

outchar :* inchar // set returned value

return // exit if not lower-case letter

endif

outchar :* char (integer (inchar) - 8!40) // convert to upper-case

eodfunction
f
Upper)

The previous function example utilized the return statement for explicit exit from a

routine (i.e., procedure or function). This statement is one of several such statements that

eliminates the need for a GOTO in the language. An important feature in the language is the

lack of the GOTO statement. The following example uses two other control flow statements,

together with block labeling, to program an application that normally requires a GOTO
statement.

primary : For index : Oto Bound do

size:* Motor— size index

While Motor [index] * on do

if size < mid— size do

q
loop primary

orif size < max— size do

break primary

otherwise

Slew_motor (index)

eadif

endwhOe

eadfor (primary!

// labeled statement

// assignment

// inner loop

// conditional statement

// iterate for loop

// alternative

// exit for loop

// default alternative

// procedure invocation

// end of alternatives

// end of inner loop

// end of labeled block

98

The loop statement above causes the for loop iteration to occur: that is, it acts like a GOTO
the for. which causes the iteration count of the loop to be incremented, the test for comple*

tion to be performed, and the for block to be executed if the iterations have not been com-

pleted. The break statement on the other hand is a block exit sutement. In the above ca.se. it

exits three levels of blocks: the if, while, and for. and execution continues after the eadfor.

Labels can only appear on blocks (at the beginning and end) and are only used with the

r break, loop, and retry (in critical regions) statements.

The statement sequence above would have had to be preceded by a declaration m
which the variables, types, and constants are declared. All items must be declared before their

use. The declaration for the above could be

Declare

min—size 0

mid—size • 25

max_size » 50

size : integer initially min size

, bound : integer initially 0

Onoff is (on, ofT] initially ofT

Motor—size : array [0..9] of integer

Motor : array [0..9] of OnofT

enddedare

Notice the use of initialization clauses on variable and type declarations, which

allow for variables to be declared with initial values. For instance, the variable bound is

declared with the initial value zero, and the variable motor is declared as an array of

enumerated data values, initially all elements being the value off. The declaration form is

declares new data types and is discussed more fully below.

The break and loop example above also introduced the multiarm if statement that

allows the programming of a branch-tree. Only one arm of the statement is elaborated on

each iteration of the while loop, depending on the boolean expressions in each arm. Any
number of orif clauses may be present, and the otherwise clause is optional. Thus, the forms

below are valid if statements:

if (x - 0) or (y - 15) do

• • • •

cadif

if x * y do

• • • •

otherwise

Another form of flow control sutement in Praxis is the select sutement. which

selects a sequence to elaborate from a set of cases according to a selection expr rssion. For ex-

ample:

// a consunt

// a variable

// an enumeration type

// array variable

// array variable

Declare

subsystem is [power, aiign, beam, target] //a type

system : subsystem initially beam // a variable

enddedare

99

select system from

case power : Print (“Power subsystem”)

case align : Print (“Alignment”)

default : Print (“Others”)

eodsdcct

Only one of the Print procedure invocations is executed, depending on the value of the

enumerated variable system. Note that the default clause will be executed for any values

other than power or align. The strong typing and declarations ensure that the only other

enumerated values the system can take on are beam and target.

Another control application that can be run on the PDP-1

1

uses data structures,

procedure variables, and interrupt procedures to quickly and easily program an application

that normally must be done in assembly language:

interrupt procedure clock .service (

)

ticks ticks + 1

cadprocedure (clock.service)

declare

vector is structure

routine : interrupt procedure () initially dock .service

status : logical initially 8#340

cndstructure

dock : location (81100) vector

ticks : static Integer initially 0

enddedare

The variable ticks gets incremented for each interrupt from the line dock on the POP-! 1.

Note that because the interrupt procedure is executed asynchronously, communica-

tion with the other code must be done through static variables. Only one copy exists of any

static variable.

The user-defined structure data-type vector has two fields: the first is the routine.

which is of type Interrupt Procedure and is initialized to be the address of the clock service

routine: the second field is a logical (i.e., bit-string) variable, which is set to the value desired

for the processor status word. The actual declaration and positioning of the dock vector are

accomplished by the variable declaration clock and the location attribute.

The above sequence would most likely be used in conjunction with a read routine of

the form

function Read-ticks () returns t : Integer

t :» ticks

cadfunction
|
Read-ticks)

The empty parentheses (i.e., ()) denote a routine with no parameters and would be invoked

with the form
(j

count :* Read— ticks () // get # of ticks

The interrupt-procedure example utilized the structure data type (i.e., the user-

defined vector) and the procedure data type. These data types are two of the predefined data

types in the language, ail of which are listed below:

100

r

Discrete types .

integer

cardinal

char

boolean

enumeration

Control types

interlock

logical

pointer

Floating types

real

long real

Aggregate types

array

structure

set

Routine types

procedure

function

Other types

general

descriptor

- signed

- unsigned integer

- ASCII character

- true/false

- programmer-specified values

- locked/unlocked

• bit string

- pointer to a typed object

- floating point

• double precision real

- array of any type, access by index

- various type components, access by name
- set of discrete type

• typed procedure variables

• typed function variables

• union of all types (used as formal parameter)

- type descriptor

User-defined data types may be characterized in terms of the predefined types or

other user-defined types. The is form declares a user-defined data type. The semaphore in the

example below is a user-defined data type. Sync is a variable of type semaphore:

declare

semaphore is structure // type dec!

lock : interlock

count : integer initially 0

eodstructure

Sync : semaphore //a semaphore variable

enddeciare

This method for synchronization was proposed by Dijkstra in 1968. The semaphore is a

special variable that can be manipulated only by the primitives Wait (also called the P

operator) and Signal (also called the V operator), defined as follows:

procedure Wait (Sem : inout ref semaphore) // P operator

Region Sem.lock do

if Sem.count * 0 do

retry

endif

Sem.count •* -l

endregion

endprocedure (Wait)

// protect count access

// check count value

* // loop, unlock, a reiock lock.

//

,7 decrement count

,7 end of critical region

// return from procedure

procedure Signal (Sem : inout ref semaphore)

Region Sem. lock do

// V operator

// enter critical region

101

Sem.count +1

endregion

cndprocedurc {Signal)

// increment count

// exit critical region

// exit from Signal

The Wait procedure allows a process to delay while waiting for an event to occur. The Signal

procedure is used to signal another process that an event has occurred. In the above example.

f it is assumed that the semaphore would be shared between two processes, and each process

would have its own copy of the Wait and Signal procedures. The interlock is utilized to

guarantee atomic access to the semaphore count without worrying about actual code se-

quences.

The form assignment statement can be read as transformed by. Thus, the

statement

Sem.count +1

increments the count field of the semaphore passed as an argument to Signal and is equivalent

. to the statement

Sem.count :* Sem.count +1

The formal parameter specification on Wait (and Signaf) explicitly specifies that the

actual parameter be passed by Ref (i.e., reference) and that the parameter will be both read

(i.e.. in) and written (i.e., out). Parameters may be passed by Ref or Val (i.e.. value, by copy)

with the default being by Val. The programmer would usually specify by Ref. for large

aggregates, in the interest of efficiency The data-passing direction can be specified as in.

inout. or out with the default being in. The compiler checks at compile-time to ensure that the

usage of the parameter, within the routine, is consistent with the passing direction.

The semaphore. Wait, and Signal definitions can be encapsulated within a Module

for separate compilation, or for data abstraction, or for both. Thus, the definition module

would be

Module Semaphore, package

Export semaphore. Wait, Signal

Declare

semaphore is hidden structure

lock : interlock

count : integer initially 0

endstructure

enddedare

Procedure Wait (Sem : inout ref semaphore)

endprocedure |Waitj

Procedure Signal (Sem : inout ref semaphore)

endprocedure {Signal!

eedmoduie {Semaphore— package!

The declarations ofsemaphore . Wait, and Signal are made available by the Export

to other modules (i.e., if this module was within another) or to other separately compiled

modules that Import the declarations. Note that types, as well as data and routines, can be

imported and exported.

102

The hidden attribute specified on this new declaration of the semaphore type imple-

ments what is referred to as an abstract data type. That is, the type name is known outside of

the module, but the internal structure is unknown. Thus, an application program can import

the type and declare and use variables of type semaphore without knowing the details of the

structure. For instance:

Main Module Joe_Schmoe

Import semaphore. Wait, Signal from Semaphore_package _

Declare

Async : segment (control— area) volatile semaphore

Bsync : segment (control_area) volatile semaphore

enddedare

While true do // infinite loop

Wait (Async) // process synchronization

Signal (Bsync) // process synchronization

endwhile

endmodnJe |Joe Schmoe)

The main module allows the use of top-level code (i.e., code not within a routine) and is the

main program or process, depending on the operating system employed. In the example, two

variables. Async and Bsync. are declared, using the imported semaphore definition. These

variables are then used with the Wait and Signal procedure calls to synchronize this process

with other processes. Note that the language makes no assumptions about the run-time

system; no tasking or multiprocess operations are built into Praxis. These facilities can be

programmed in the language, or provided by existing operating environments.

The segment storage class on the declarations of Async and Bsync specify that the

semaphores are static in a named (i.e., control- area) data area. This data area can be

associated with program sections or location counters (depending on the implementation) by

means of the %Segment compiler directive. For instance, for a PDP- 1
1
/RSX- 1 1M implemen-

tation. the directive

%Segment control— area RW, D

creates a program section (i.e., PSECT) which can be controlled and positioned at

link-time. Segment can be viewed as a named location.

The Print routine used in a previous example could be written as

Procedure Print (string : In ref array [l..?length] of char)

For index :* 1 to length do

Put—character (string [index])

endfor

endprocedure |Type(

The formal parameter specifies a flexible array of characters as the type of the parameter, this

allows the arrays of characters of any length to be passed, with an implicit-size parameter

length. A quoted string is considered an array of characters indexed 1 through N. where N is

the number of characters between the quotes.

Flexible arrays can also be allocated from the free memory storage (i.e.. heap) and

accessed through pointers. The free memory is only utilized when the programmer explicul>

103

specifies it by the Allocate and free operations. There is no implicit heap usage or garbage

collection in the language, an essential requirement in real-time control applications. Data

objects in the heap are referenced by pointers. For instance:

Declare

node is pointer structure

address : integer

status : logical initially 8#201

data : array [-3..2] of real

neat : node initially nil

endstructure

head : node initially nO

enddedare

head : allocate node (address : 8! 177560)

if head®.data [2] * 0 do

The node declaration is a pointer to a structure of the form shown. Head is a declaration of a

pointer object, and the assignment statement creates an object within the heap and places the

location of the object in the variable head. The field address will be initialized to the octal

value 177560, and the field status will be initialized to the octal value 201 via the type in-

itialization clause.

The object is referred to with the “@" operator. That is, since head is a pointer to a structure,

then

head®

head® .address

head®.data [J]

head® .next

head® .next® address

- whole structure

• an integer field

» an element of a field

» i field

- a field of an object pointed to by a field

are valid references. Note that the last reference only makes sense if the value in the next field

points to something (i.e.. not nil).

The node pointer structure allows a linked list to be allocated at runtime from the

heap. The iterator form of the for loop is useful for stepping through such a list.

For p :* head then p®.next while p Onil do

if p®.status and 8#200<> 8#0 do

endif

endfor

The pointer variable p is declared and is assigned the value from head: if the value is not nil

then the body of the for block is elaborated. The expression between the then and while is the

iteration expression that specifies the subsequent values of p
Objects allocated from the heap must be explicitly returned with the free procedure,

which has the form

104

Free (p. head) // release P and head

Free may be called with any "type of pointer and any number of parameters.

An important consideration in real-time systems is the ability to handle abnormal

conditions and catastrophic failures. In Praxis, this is accomplished with named exceptions

and guard blocks. Both predefined and user-defined exceptions are available and can be

caught with a guard block. Thus,

Guard

X Y/Z

catch

case divide—aero : Print (“Whoops”)

codguard

would catch any divide-by-zero exception in the code between the guard and catch phases, or

in any nested routines invoked from within the code. When and if a named exception occurs,

the first (deepest) dynamically nested catch case for the named exception is elaborated. The

catch clause can specify various named exceptions as well as use a default clause (i.e., all

others).

Guard blocks may be used to contain exceptions in a large program or to catch an

exception from a localized section. For instance, the Praxis input/output package uses excep-

tions for abnormal condition handling:

Import Open, Open— error, file. Name—error from 10— package

Declare

myfile : file

enddeclare

Guard

Open

with

name : “DB3: (Shiva] Test.dat”

file— id : myfile

access : default— access

endwith

catch

case open— error . Print (“Bad I/O")

raise Bad— 10
case name— error : Print (“Bad filename")

endguard

The Open procedure invocation is surrounded by a guard block, the procedure

upon detecting an error will raise the exception open- err that is declared in the 10. package

Control is transferred to the case clause in the catch block for the exception named The

clause is then elaborated. In the open_ err case, a routine is invoked and then a user-defined

exception is explicitly raised, and elaboration continues in a higher-lev cl guard block For the

nome-err exception, the case clause is elaborated and elaboration continues after the

eudguard. If no exceptions are raised within the open, then elaboration continues after the

endguard

105

The Open example also introduced an alternate procedure invocation, using named

formal parameters and the list (i.e., with-endwich) format. The named parameters allow the

use of optional parameters and parameter specification in any order. The name on the left of

the colon (:) is the name of the formal parameter, and the name on the right is the actual

parameter of the invocation. The declaration of the Open procedure could he of the form

procedure Open
param

file, id : in val file

name : in ref array [1..7N] of char

access : in val set of access, type

window : optional in val 8 bit integer

initially 0

share : optional in ?al set of sharing

initially empty, share

. . more optional parameters .

.

endparam

.
.
procedure body .

.

endprocedure Open

Only formal parameters declared as optional may be omitted in any actual invocation. Each

formal parameter specified as optional must have a default value specified by the initially

clause.

The Guard example introduced two procedures from the Input/Output package.

The package is implemented as a series of procedures, functions, and abstract data types

written in the language. Each implementation will have slightly different I/O packages,

tailored to the particular operating environment. Under the PD P-1 1/RSX-l 1M and VAX-
/VMS operating systems, the I/O package supports the full RMS-1 1 capabilities including

indexed files. The standard, I/O-reiated, encapsulated data types are

•file record stream attribute

and some of the routines are

Create Open Close Extend

Display Erase Connect Disconnect

Find Delete Flush Release

Get Put Rewind Update

In addition, a set of conversion routines for the predefined data types are supplied, which

convert to/from ASCII text.

Other packages are supplied with implementations, or are supplied as interfaces to

existing packages in other languages. Praxis routines can invoke other language subroutines

and functions, or they may be called from other languages. For instance, a Fortran

mathematics package would be defined as

Module Math— package

Export Sin, Cos, Log

Fortran Function Sin (X : real) returns Y : real

endfunction iSinj

endmoduie (Math, package)

106

Other than the Fortran linkage. Praxis provides the linkages

Inline • Place routine code in place of invocation

Interrupt - PDP-11 Interrupt service routine

DilTerent compiler implementations could supply additional linkages.

An important feature that is necessary in the control environment is the ability to

control the actual code generated for differing applications: for instance, the abilify to

generate code that would reside in ROM. This control is supplied by means of both

predefined and user-defined compiler variables (comp- var), in conjunction with compiler

directives. For instance:

%define Author, three—

D

%Set Author “J R Greenberg”

%Set Object- ROM
%Set three— D * true

Declare

span it 0..5

%if three— D or All- three

data : array [span. span, span] of real

^otherwise

data : array [span, span] of real

%endif

eoddeclare

Compiler variables can be either boolean or string types and are explicitly declared and

assigned to by the %Set compiler directive. The comp— var Object- ROM specifies that the

code generation should be such that the code and constant data can be burned into ROM.
The %if-%otherwise-%endif allows conditional compilation under control of a boolean

comp- var expression. The referenced comp- var values can be set either within program

text or upon compiler invocation.

Another feature that needs mentioning is the ability to generate specific instructions

or nonstandard calling sequences. This is provided by the block-structured code statement

shown below for a PDP-11 application:

Procedure Trigger (X : integer)

Declare

timer : static integer

index : integer

enddedare

code ”PDP-ir do

MOV #33. index(SP)

MOV X(SP). Rl

LP: INC timer

TRAP
DEC index(SP)

BNE LP
endcode

if timer * X do

// set a count

// pass parameter

// strobe

// go to another routine

// count

//

//string comp- var

// predefined comp— var

// user defined

107

cndif

cndprocedure (Trigger

j

The concluding example outlines a simple task processor, using arrays of procedure

variables and the set data type:

Declare

number b integer range 0..5

active b set of number

active- tasks : static active initially active ()

task b procedure ()

task, list : static array [number] of task

enddedare

// range of integers

// set of integers

// a set variable

// procedure type

// list of possible tasks

Procedure Activate (task. id:number)

Active, tasks •* + Active (task- id) // place in set

cndprocedure (Activate]

For index in active, tasks do

task, list [index] ()

endfor

// scan all active tasks

// invoke task

//

The set data type in the declaration of active is used as an attribute associated with each task.

The set has six possible members denumerated by the values 0 through 5. Sets can be of any

discrete type and can be arbitrarily large (i.e.. limited by memory size of machine). The active

(t after the initially clause and in the assignment statement is the set constant constructor,

which allows items from the set to be included or removed. The For statement iterates

through the set of active- tasks and will invoke any active task.

Section 6

SUMMARY

The preceding section, although introducing many features of the Praxis language,

is by no means exhaustive. Some features have not been mentioned, and others have only

been partially described. The full language is described in Praxis: Language Reference

Manual and the Programming in Praxis manual.

The Praxis language is specifically within the state of the art of language design, par-

ticularly designed for control and system implementation needs. Complex language features,

such as generic procedures, overloading of operators, and parallel processes, have been inten-

tionally left out. We felt that these concepts were either not understood enough to be incor-

porated at this time, or that they need not be part of the language.

In conclusion. Praxis is an extremely powerful, modern programming language that

goes beyond Pascal and is available today.

108

ACKNOWLEDGMENTS

The original' language was designed by Arthur Evans. Jr., and C. Robert Morgan of

BBN in 1977. Additional language design in 1979 by Evans and Morgan was augmented by

James R. Greenwood (LLNL) and Michael C. Zarnstorff (University of Wisconsiri). The

final language design in 1980 was developed by the above individuals, with contributions

from Earl Killian (BBN), Graeme Williams (BBN), and W. Nowicki (Stanford University).

The continued support of the management of the laser fusion program .and the

Nova laser project at LLNL. in particular J. L. Emmett. J. F. Holzrichter. R. O. Godwin,

and W. W. Simmons, is gratefully acknowledged. The encouragement and support of H.

Ahlstrom and L. Coleman of the fusion experiments program at LLNL is also greatly ap-

preciated.

The tremendous effort by F. Holloway in developing the first application program

in Praxis for the Nova control system is hereby acknowledged. His patience with early com-

piler releases, his persistence in developing the application acceptence test, and his constant

enthusiasm were invaluable to the success of the project.

Additional thanks go to G. J. Suski. P. Rupert, and the controls development group

at LLNL for their willingness to attempt the project and suffer through the preliminary ver-

sions of the product.

Also, the dedicated support and documentation efforts by W. Nowicki was essen-

tial. In particular, his work on the Programming in Praxis manual came at a critical time.

The documentation and support role of J. Walker and R. Shapiro at BBN was ex-

tremely valuable. J. Walker created the Language Reference Manual in a short period of time

from an everchanging definition.

109

BIBLIOGRAPHY

Many languages are identified in the body of this report without specific references.

Citations are as follows:

Ada (Ichbiah-79A*79B)

ALGOL-60 (Naur-63)

ALPHARD (Wulf-76)

BCPL (Rkhard-69). (BBN-74)

BLISS (Wulf-71)

CS-4 (Intermetrics-75)

EUCLID (Lampson-77)

FORTRAN (FORTRAN-76)
IMP (Irons-70)

jovial (Shaw-63)

Mesa (Mitchell-79)

Pascal (Jensen-74)

PL/I (IBM)
Simula (Dahl-70)

(BBN-74)

BCPL Manual, Bolt, Beranek. and Newman. Inc., Cambridge, Massachusetts

(1954).

(Brineh-Hansen-72)

P. irinch Hansen, “Structured Multiprogramming,” Comm. ACM 15, 7, 574-578

(1972).

(Brinch-Hansen-73)

P. Brineh-Hansen, Operating Systems Principles, Prentice- Hall, Inc.. Englewood

Cliffs, New Jersey (1973).

(Dahl-70)

O.-J. Dahl, B. Myhrhaug. and K. Nygiard, Common Base Language, Norwegian

Computing Center, Publication S-22 (1970).

(DoD-77)

“Depanment of Defense Requirements for High-Order Computer Programming

Language—Ironman,” January 14, 1977.

(Evans-76)

A. Evans, Jr., and C. R. Morgan, Development of a Communications Oriented

Language. Bolt, Beranek, and Newman. Inc.. Cambridge. Massachusetts. Report

No. 3261 (1976)

(Evans-77)

A. Evans. Jr., and C. R. Morgan, A Communications Oriented Language ICOLI:

Language Design , Bolt, Beranek. and Newman. Inc.. Cambridge. Massachusetts.

Report No. 3534 (1977).

110

(Evans-79)

A. Evans,'Jr., C. R. Morgan. E. S. Roberts, and E. M. Clarke. The Impact of Mul-

tiprocessor Technology oh High-Level Language Design. Bolt, Beranek. and New-

man. Inc.. Cambridge. Massachusetts. Report No. 4188 (1979).

(Fisher-76)

D. A. Fisher. “A Common Programming Language for the Department of

Defense—Background and Technical Requirements,” Institute for Defense

Analysis, Paper P-1 191. June 1976

(FORTRAN-76)
“Draft proposed ANS FORTRAN,” ACM Sigplan Notices 11, 3 (1976) (entire

issue).

(IBM)

“PL/1 Language Specification,” IBM Corporation. ANS1I Standard for PL/I.

Subset G. Form GY33-6003-2 (undated).

(Ichbiah-79A)

J. D. Ichbiah. J. Heiard, O. Roubine, J. Barnes, B. Krieg-Brueckner, and B. A.

Wichmann, “Rationale for the Design of the Ada Programming Language,” ACM
Sigplan Notices 14, 6 (1979).

(Ichbiah-79B)

J. D. Ichbiah. J. Heiard, O. Roubine. J. Barnes. B. Krieg-Brueckner. and B. A.

Wichmann. “The Preliminary Ada Language Reference Manual," ACM Sigplan

Notices 14, 6 (1979).

(Intermetrics-75)

CS-4 Language Reference Manual and Operating System Interface. Intermetrics.

Inc., Cambridge. Massachusetts. Report I R- 130-2 (1975).

(Irons-70)

E. T. Irons, “Experience with an Extensible Language," Comm. ACM 13, 1 (1970).

(Jensen-74)

K. Jensen and N. Wirth, PASCAL User Manual and Report (Second Edition).

Springer-Verlag. Berlin (1974).

(Knuth-73)

D. E. Knuth. A Review ofStructured Programming. Stanford University. Stanford.

California. Computer Science Department. Report STAN-CS-73-371 (1973).

(Knuth-74)

D. E. Knuth. “Structured Programming with Goto Statements.” Computing

Surveys (December 1974).

(Lampson-77)

B. W. Lampson. J. J. Horning. R. L. London. J G Mitchel. and G J Popek

“Report on the Programming Language EUCLID.” ACM Sigplan Nonces 12 2

(1977) (entire issue).

Ill

(Mitchell-79)

J. G. Mitchell. W. Maybury. and R. Sweet. Mesa Language Manual VI. Xerox Cor-

poration. Palo Alto, California. Report CSL-79-3 (1979).

(Morgan-77)

C. R. Morgan and A. Evans, Jr., Communications Oriented Language (COLl:
r Language Implementation, Bolt, Beranek, and Newman, Inc., Cambridge,

Massachusetts. Report No. 3533 (1977).

(Naur-63)

“Revised Report on the Algorithmic Language ALGOL 60" (P. Naur. Ed.). Comm,

ACM 6. I, 1-17 (1963).

(Richards-69)

M. Richards, "BCPL—A Tool for Compiler Writing and Systems Programming,"

from Spring Joint Computer Conference (1969), pp. 557-566.

(Shaw-63)

C J. Shaw, “A Specification of JOVIAL,” Comm. ACM 6, 12, 721-736 (1963).

(Wirth-76)

N. Wirth. Algorithms + Data Structures * Programs, Prentice-Hall Inc.,

Englewood Cliffs, New Jersey (1976).

(Wulf-71)

W. A. Wulf, D 8. Russell and A. N. Haberman. "BLISS: A Language for System

Programming" Comm . ACM 14, 12, 780-790 (1971).

(Wulf-76)

W. A. Wulf, R. L. London, and M. Shaw, Abstraction and Verification in

ALPHARD: Introduction to Language and Methodology . Carnegse-Mellon Univer-

sity, Pittsburgh, Pennsylvania, Department of Computer Science (June 1976).

(Zahn-74)

C. T« Zahn. "A Control Structure for Natural Top Down Structured Program-

ming," from Symposium on Programming Languages, Paris, France (1974).

BJ/jvb U. S 6ov»rnm*m Printing Offiet 1981/1—789002/5531

112

„ Appendix

LANGUAGE SYNTAX

Backus-Naur Form (BNF)

Here, we describe the context-free syntax of the language, using a variant -of the

Backus-Naur Form (BNF). In particular, we adhere to the following conventions in the BNF
representation:

• Lower-case words, perhaps containing underscores, denote syntactic categories,

such as:

function, list

relation, operator

linkage

• Boldface words denote reserved words, for example:

select

fiacdos

• Square brackets enclose optional items. A quoted square bracket means that it

is part of the syntax (i.e„ array subscripts and enumerations).

cndif [{label)] array '[' subscript,...']’ of type

[mode] function for ID is '[' enumeration....']'

[access, mode] structure —

• Repeated items are represented by a delimiter followed by three dots. Thus, a

list of identifiers could be designated by

identifier,...

where the comma is the repeat delimiter. Thus, the BNF form,

identifier, list : identifier,...

means that the identifier list can contain one or more identifiers separated by

commas. Another example is

statement, list : statement;...

where the semicolon is the delimiter.

• The syntax rules describing structured constructs in the language are presented

in a form that is visually similar to their usage in programs. For example, the

select statement is specified in the BNF as

113

select, statement : .label: select expression from

[case case, literal,... : sentence;...] ...

[default : sentence;...]

eudselect (label)

• Various syntactic items can be represented by the item prefixed by a qualifier

corresponding to a category name. The prefix is intended to convey extra

semantic information. For instance:

module, identifier module. ID function, identifier

are all equivalent to:

identifier

• Some abbreviations used in the syntax description are

ID
expr

spec

e— constant

1- constant

identifier

expression

specifier

compile-time constant

link-time constant

• The slash (/) is used to delimit various cases of a BNF production. It can be

read as
s

‘or.
5*

Thus:

declaration procedureL,declaration

/ function-declaration

is just shorthand for

declaration :: procedui e-rdeclaration

declaration function, declaration

Syntax Definition

module declaration [main] module module— ID segment— list

export ID,... [to module— ID....] :...

sentence;...

endmodule [{module- ID)]

module. ID ID / module— ID.ID

sentence ::* statement / declaration / empty

declaration procedure- declaration

/ function- declaration

/ listed- declaration

/ import- declaration

114
’

'

statement

import- declaration

segment— list

Declarations

procedure— declaration

mode

procedure- spec

parameter- spec

function— declaration

function - spec

variable-spec

storage

initial

parameter

/ module- declaration

/ exception- declaration

assignment— statement

/ invocation- statement

/ iterative— statement

/ flow- statement

/ special- statement

/ miscellaneous— statement

import ID.... from module- ID

/ use module- ID

segment (segment- ID....) [aligned (c— const....)]

forward [mode] procedure procedure— ID procedure- spec

/ [mode] procedure procedure- ID procedure- spec

sentence;...

eodprocedure [[procedure- ID]]

inline / fortran / interrupt

parameter- spec [segment— list]

(parameter...) / ()

/ param
parameter;...

eodparam

forward [mode] function function- ID function— spec

/ [mode] function function— ID function- spec

sentence:...

codfunction [[function. ID}]

parameter- spec returns variable— spec [segment- list]

variable- ID....
:
[storage] type [initial]

static

/ location (1. constant)

/ register (register- spec)

/ segment - spec

initially expression

ID....
:
[call— type] [storage] type [default] [desc_ clause

115

segment— spec segment (segment- ID) [aligned (c_ constant))

desc. clause with descriptor— ID

call- type variadic call- type

/ [optional] [volatile] [in / out / inout]

[ref / val]

default initially expression

Type [different] [attribute- list] base- type [constraint]

[initial] [abstract— list]

attribute hidden / readonly

/ volatile

/ packed / packed packed / unpacked

/ e constant bit

constraint range discrete— type

abstract- list abstraction / abstraction abstraction— list

abstraction starting [mode] procedure procedure— spec

/ finishing [mode] procedure procedure- spec

/ in zone— ID

base.* type basic- type

/ discrete- type

/ aggregate- type

/ special— type

listed —declaration declare (decl)

/ declare

deck...

endedare

decl variable— spec

/ constant— ID.... 1- constant

/ type- ID,... b [different] type [initial]

/ zone— declaration

basic— type integer / real / logical / char / long- real /

/ interlock / cardinal / boolean

discrete— type limit. .limit

/
'[' enumeration- ID....']’

/ base™ type

limit expression / ?!D

zone— declaration ::® zone- ID: storage zone (parameter....)

116

special- type

aggregate- type

field

ease— label

exception— declaration

Statements

assignment— statement

invocation- statement

procedure- expression

iterative— statement

pointer type

.J descriptor

/ general

/ [mode] procedure procedure- spec

/ [mode] function function- spec

army '[' discrete- type,...']' of type

/ structure

field;...

eudstracture

/ set of type

fill (c- constant bit)

/ field- id,... : type

/ select tag- ID from

[case case- label... : field;...] ...

endseiect

e_ constant .. c- constant / c_ constant

excepdoo exception- ID,...

/ arm comp— var- ID....

/ disarm comp- var— ID....

expression :* expression

/ expression •* infix- op expression

procedure- ID (expression....) / procedure- ID (

)

/ procedure— expression

/ procedure— ID (parameter- ID: expression....)

/ procedure- ID

with

parameter- ID: expression;...

endwith

expr- 10

[loop- label:] while boolean- expression do

sentence;...

eodwiJIe [lend- label)]

/ [loop- label:] repeat

sentence:...

until boolean— expression [lend— label I]

/ [loop— label:] for for- element do

sentence:...

eadfor [lend- label)]

117

for— dement

flow_ statement

flow— statement

special-- statement

specials, statement

for— ID :* expression downto expression

/ for- ID :* expression to expression

/ for- ID : expr then expr while boolean- expr

/ for- ID in discrete- type

/ for- ID in set- type

break label

/ loop [loop- label]

/ return

/ [begin- label:] if boolean— expr do

sentence;...

orif boolean- expression do

sentence:...

otherwise sentence;...

endif [(end- label)]

[begin- label:] select expression from

cast case- label...

:

seatenet;,.. ...

default : sentence;...

cadseiect[!end- label)]

/ [begin— label:] upoo viaduct- ID,... leave

sentence;...

through

ease viaduct— ID : sentence;... ...

endupoo [lend- label)]

/ via viaduct- ID

[begin- label:] repon interlock- expression do

sentence;...

otherwise

sentence;...

eadregioa [{end- label)

/ retry

/ [begin— label:] guard

sentence;...

catch

ease exception- ID.... : sentence:...

default : sentence:...

endguard [jend- label)]

/ raise exc eption- id [finishing ID....]

/ reraise [finishing ID....]

/ [begin- label:] block

sentence;...

endbiock [jend- label)]

[begin— label:] code “machine- designator" do

instruction:...

endcodc [|end- label)]

118

instruction assembler— instruction

misc.. statement free (pointer— type- expression:...)

/ swap (expression, expression)

/ assert boolean— expression

Expressions

The numeric values on the "expr” identifiers below represent the operator precedence levels.

expression expr- 0

/ when boolean— expr then expr rise expr

expr—

0

[expr- Oeqv] expr- 1

/ expr- 0 aor expr- 1

expr— 1 expr- 2 [or expr- 2]

expr—

2

expr- 3 [and expr- 3]

expr—

3

[not] expr- 4

expr—

4

expr— 3 [relational- operator expr- 5]

expr- 5 expr- 6 [shift- operator expr— 6]

expr—

6

[expr— 6 addition- operation] expr- 7

expr—

7

expr- 8 [multiplication, operator expr- 8]

expr— 8 [unary- sign] expr- 9

expr— 9 expr— 10

/ allocate expr— 10

/ force expr— 10

expr— 10 ID / constant / expr— 10 (expression....)

/ expr- 10 (field— value....)

/ (expression)

/ expr- 10 '[' expression.... ']’

/ expr- 10 . field- ID

/ expr- 10 @
/ expr- 10 with parameter- ID expression... endwith

field— value field— ID : expression /

'[’ case— element ']’ : expression

119

Operators

Infix, operator eqv / %m / or / aad

/ relational- operator / shift— operator

/ addition— operator / multiplication- operator a

relational operator

shift— operator

multiplication— operator

* /<>/<-/</>«/>

Isfe / refc

*/ T /mod

Predefined Functions

max - maximum
min - minimum

succ - successor

pred » predeccessor

abs - absolute value

round - real to integer rounded

floor » largest integer not greater than real

ceiling - smallest integer not less than real

low - lower limit of discrete type

high - upper limit of discrete type

size— of » size in bits of data object

descriptor— of - descriptor of a type

user©- isee

Praxis Text Input and Output

Documentation by Bill Nowieki
Septmeber 24, 1980

This document describes a set of staple input and output routines for Praxis
under VMS that will be available until a full RMS based I/O package can be
completed. This package consists of two modoles: Textio, written in Praxis,
and Macio, written in Vax assembly language. The following identifiers can ho
imported from the Textio" module:

file Type representing a file
TTY File for TTY ou tpu

t

TTY. in File for TTY inpu

t

node Enumerated type for read, wri te
read File open aode
wri te

•• •• M

EOF End of File indicator
EOL End of Line indicator
Opcn.f i 1

e

Open a text file
Cl osc.f i le Close a text file
Gc t.charac ter Read a single character
Ge t.i n teger Decode an integer
Gc t.real Decode a real
Gc t.padded.string Read a string
Ou t.record Print a line
Ou t.charac ter Write a charac ter
Ou t.s tri ng Write several character
Ou t.padded.string Write string without trailing blanks
Ou t.i n teger Write an integer
Ou t.areal Write a real
Ou t.i inc Write a string and output the record
TTY.l ine Write a message to the terminal

The following procedures ean be

Orcn
Close
Co (.record
Pu t.record

imported from the MACIO module:

Open a LUN
Close a LUN
Actually get the record
Actually put the record

The routines use a line buffer of 132 characters. The special character
constunt EOF is defined as a flag character returned when end of file is
reached. When a file is opened, the second parameter is a mode which is
either read, or write. A file is a structure which contains a logical unit
number (LUN) , a buffer position counter, and a line buffer. The files TTY
and "TTY_in" are special static files that can be used for output and input to
the terminal. They arc initially set to the logical device "Sysdlnpul for

121

<$

inpat and "SystOutput" for oatpot, which VMS associates the user's terminal.
1/U to the terminal is immediate, instead of buffered, so that a prompt string
sent to TTY followed by a read from TTY.in will have the expected effects.
The package allocates LUNS starting at one, finding a free Ian for each open
call. Normally the user should not be concerned aboot this. Close.fi le
releases the Ians so that they can be “recycled*. A maxima® of 8 files can be
open at any time.

Currently to aocess these routines you must define the logical symbol
PRXSL1BRARY before you compile your program.' This is normally done in
tCCLIBl SYMBOLS. Just include an appropriate import statement to import the
routines that you want to use. Usually you will import only from Textio.

The object modules should be automatically foond by the linker, since the
symbol LNKSLibrary is defined by the command "UsePrxLib'

.

procedure Open.fj le(f : inout ref file, asmode, name s in ref array(l..?N] of
char)

This procedure allocates a logical unit number, opens the named
file for either “read" or “write", and resets the buffers for the file.
Currently eight files can be opened in addition to TTY and TTY.in. The
file name can be a usual y VMS name specification, usually as a quoted
string.

procedure Close.fi le(f: inout ref file)

This procedure closes a file and releases the associated lun.

function Ge t.charac ter (f s inout ref file) returns es char

This function returns the next character from the specified file.
If the end of the file is reached, the character EOF is returned. A new
record is read when needed, and the EOL character is returned.

function Gt t.integerCf: inout ref file) returns N: integer

This function returns a decimal integer read from the specified
text file. Spaces, tabs, and formfeeds are skipped before the number.

function Get.realtf: inout ref file) returns X: real

This function returns a real number read from the specified text
file. A real number consists of zero or more digits followed by &

decimal point, followed by zero or more digits. Thus no exponential
notation lika Fortran’s is currently implemented. Spaces, tabs, and
formfeeds are skipped before the number.

122

procedure Gc t_padded_s tr i ng (f : inout ref file, s: inont ref array ll..?nl of
char)

This procedure returns a string read from the specified text file.
The strini is read up to and end of line, and the rest of the string is
padded with blanks. The first character of the string is sol to EOF
*hcn the end of file is reached.

procedure Ou t_record(f : inout ref file)

This proccduro outputs the current record (line) to the text file,
and resets the buffer positioo.

procedure Ou t„character(f : inout ref file, c: char)

This procedure outputs a character to a file. In reality it just
puts the character into a buffer, and Out_record must be called to
actually write the record to the file. On immediate I/O files, like
TTY, the I/O is done immediately.

procedure Ou t_string(f : inout ref file, s:in ref arrayIl..?N] of char)

This procedure writes the string to the specified file. It is
usually used with a quoted string constant as second parameter.

procedure Ou t_padded_stri ng (f : inout ref file,
s:in ref array!l..?N] of char)

This procedure is similar to Out.string, but it does not print
trailing blanks or nulls in the string. For example, Ou t.string (TTY,
"abc) will print six characters, while Ou t_padded_s tr i ng (TTY

,

"abe ") will only print three.

procedure Ou t_i s teger (f : inout ref file, N: integer)

This procedure puts as integer to a text file as a string of
decimal digits. If the integer is negative, a minus sign is printed
before it. No leading or trailing blanks are printed.

procedure Out.areal (f : inout ref file, X: real)

This procedure puts a real number to a text file as a string of
decimal digits. If the real number is negative, a minus sign is printed
before it. No leading or trailing blanks are printed.

123

prordure Out_line(f: inout ref file, s:in ref array t I . .?Nj of ©har)

This procedure puts a strict tc the given file, and writes ;ne
record to the file. It is equivalent to a call t© Out.string followed
by a call to Out.reeord.

procedure TTY_ 1 i n e v s:ia ref arrayCl..?Nl of char)

This procedure puts a string to the TTY file, and writes the record
to TTY, It is equivalent to a call to Out stria* followed by « call to
Out.record, with TTY as a file parameter. This routine ;$ used to pries
quick oae-liae error messages, for example.

The following are lateral routines in MAC10

procedure Opea^ius: integer, mode : in teger , saee.'in ref array Cl . of char)

This is the Macro routine which uses RMS to actually ©pea a file ©a
a given LUH.

procedure CleseClun: integer)

This is the Macro routine to close the given Logical Unit Number.

procedure Ge t_record(lun : integer, buffer: inout ref array 10. ,?N1 of char,
count: inout ref integer)

This is the Macro routine that actually executes the RMS calls to
fill the record buffer, from the file associated with the given Logical
Unit Number. It returns the number of characters read in the "count"
paraae ter

.

procedure Pu t^reeordUun: integer, buffer:in ref array E0..7N) of char,
count: integer)

This is the Macro routine that actually executes the RMS calls to

write the record buffer, of the given length, to the filo associated
with the given Logical Unit Number.

enddocumen t

124

Page 125

1.4 Global Declaration Files For Arrays

Declaration of arrays in FSM source files is described in

Section 4.1. In addition, the user must provide a separate

Praxis declaration file for any emulation that uses arrays. The

Praxis source code of this file, under the specific name

AMRFGBL.PRXr should be compiled and placed in the HCSE_LI3RARY

.

The parse will require the file AKRFGBL.OBJ and AKRFGBL.SPS when

arrays are declared. The Praxis source code contains only a

single declaration section which exports array parameters for

each array employed. For a single array declared in the FSM

source file by statement of the form
// (input , inparameter , output , outparameter) (space

)

ARRAYOF_indexname_basetype

the file AMRFGBL . PRX would consist of the following text:

Page 126

nodule anrfgbl

export indexname_max , indexnane. range
export arrayofiindexna'me_ integer
export arrayof_.indexname_real
export arrayof_indexname_char
export arrayof_indexname_str ing
export arrayof_indexname_boolean
declare

pchar is char initially $<NUL> — «

string is packed array [1..32J of pchar
indexname_max * (constant equal to maximum index

value)
indexname_range is integer range 1. . indexname_nax
indexname_dimension is integer range 0. . indexnane_max
arrayof_indexname_integer is array [indexnane_dimen]

of integer
ar rayof„indexnane_real is array [indexname_dimen

J

of real
. arrayo£_indexname_char is array (indexname_dimenj

of char
arrayo£„indexname_str ing is array [indexname_dimen]

of string
arrayof_indexname_boolean is array (indexname_dimen]

of boolean
enddeclare

endmodule {anrfgbl}

NBS-114A (REV. 2*6C

)

U .3. OEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 85-3156

2. Performing Organ. Report No. 3. Publication Date

May 1985

4.

TITLE AND SUBTITLE

Hierarchical Control System Emulation

User's Manual

5.

AUTHOR(S)

Cita Furlani (Editor)

6.

PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of STANOARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

I. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

10.

SUPPLEMENTARY NOTES

Previously published as NBS-GCR-82-413 - NTIS PB83-141952

|"vl Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

The Hierarchical Control System Emulation is a collection of computer
programs written in the high-level Praxis language for use on a Digital

Equipment Company VAX 11/780 processor under the VMS operating
system. These programs allow the user to write, debug, and concurrently
emulate modules of a hierarchical control system and to simulate the
physical plant which is controlled. The emulation executes in real time
and interactive display and data logging capabilities are included.
The emulation is intended as a computer-aided control system design
tool for the NBS Automated Manufacturing Research Facility. The User's
Manual describes the use of the emulation and provides necessary
theoretical background; it is not application-specific.

12.

KEY WORDS (Six to twelve. entries; alphabetical order; capitalize only proper names; and separate key word! - -

Automated manufacturing; automatic control; hierarchical control systems; computer-

aided design; computer-aided manufacturing; simulation

13.

AVAILABILITY

[yn Unlimited

| |
For Official Distribution. Do Not Release to NTIS

| |
Order From Superintendent of Documents, U.S. Government Printing Office. Washington. D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield. VA. 22161

V

14. NO. OF
PRINTED PAGE!

giCOuM.QC IOii-pi

01. Summary date

Yr. Mo. Day

8 s

04. Software date

Yr. Mo. Day

8_ _1 J._5

FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

02. Summary prepared by (Name and Phone)

Cita Furlan-i, 921-7461 area rndp (3m.).
05. Software title

Hierarchical Control System Emulation
User’s Manual

06. Short title

03. Summary action

New Replacement Deletion

E
Previous Internal Software ID

07. Internal Software ID

08. Software type

Automated Data

Q System

Computer Program

Subroutine/Module

09. Processing mode

Interactive

Q Batch

Combination

10.

General

Computer Systems
(~~j Support/Utility

£] Scientific/Engineering

|~1 Bibliographic/Textual

Application area

Management/
Specific

Business

Process Control

Other

Industrial Control
Design

ii. Submitting organization and address

U.S. Department of Commerce
National Bureau of Standards
Bldg. 220 - Room A-127
Gaithersburg, MD 20899

12. Technical contact(s) and phone

Cita Furlani 921-2461 area code (30

13.

Narrative

The Hierarchical Control System Emulation is a collection of computer programs written in
the high-level Praxis language which allow the user to write, debug, and concurrently
emulate modules of a hierarchical control system and to simulate the physical plant which
is being controlled. The emulation executes in real time, and interactive display and
data logging facilities are included. It is intended as a computer-aided design tool for
the NBS Automated Manufacturing Research Facility shop floor control system.

14.

Keywords

Computer-aided manufacturing; hierarchical control system design; simulation; emulation;
automation; industrial control

15.

Computer mamrPr and model

DEC VAX 11-780

16.

Computer operating system

VMS, Vers. 2.7

17.

Programing language(s)

Praxis, Fortran

18. Number of source program state-

ments

19. Computer memory requirements

1 Mbyte

20. Tape drives

None

21. Disk/Drum units

System disk required.

22. Terminals

VT52, VT100 or
equivalent

23. Other operational requirements

None

24. Software availability

Available limited

o
In-house only

For government use only.

25. Documentation availability

Available

n
Inadequate In-house only

NTIS

! !

26. FOR SUBMITTING ORGANIZATION USE

185-101 Standard Form 185
1974 July

U.S. Dept, of Commerce—NBS

